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Final Technical Report

AFOSR Grant No. 91-0277

1 July 1991 -- 30 June 1994

1. Research Objectives

"Yhe research conducted under this grant is a continuation of a long-term re-

earch effort dcvoted to the study of %-.rious aspects of direct Wd inverse elec-

tromagnetic scattering previously ,supported hy AFOSR. The general goal of the

progrLm cort:r.ues :o be the establishment of a firm mathematical foundation and

the developnment of algorithrs based on sucli a foundation Mn which boundary and

domamn parameters are eithtn to be recovered fiom scattering or radiation data or

used L% controls to oytimize various functionals of the scattered or radiated fields.

Such -,anmeters include the shape of the boundary itself, functions defined oil the

boundary such as impedance, generalized impedance and generalized resistivity, as

well as domain parameters such as conductivity anid refractive index. The program.,

&& described in the original proposal, is focussed on three specific areas of invessia-

tlion: multicriteria optimization, generalized impedance boundary conditions, and

inverse scattering techniques.

We summarize the nature of each of the particular problem areas and report

on work done and in progress in each of the next four sections. In additio. to this

work. we have begun the writing of a monograph devoted to optimization methods in

antenna theory which will be devoted, to a large extent, to the systematic exposition

of the theory and computational results obtained with the support of several AFOSR

grants This monograph is being written in collaboration with Professor A. Kirsch



of th#! Universitit Erla~ngen-Niirnberg in Germany.

2. Research Accomplishments and Current Status

Many problems of applied interest in both the optimi~zation of radiated fields

and the identification of targets may be viewed as involving several performance

criteria, any one~ of which may be tak~en ar, the primary cost functional which is to

be optimized. A variety of such performance is evidenced in antenna problems as

described in [3.21. Other desirable characteristics, represented as functionals, are

most often treated as constrainiLs to be satisf~ed by an optimal solution, and some

multiplier technique is used to produce an anconstrained problem.

However, the designatioti of one primary cost functional and the rciegation of

others to the status of constraints, is somewhat arbitrarv. Indeed. a more direct

approach is to consider such problemrs as multicriteria problems of optivization.

To our knowledge, our use of inulticriteria techniques is new in the fields of inverse

scatteiing and control in electromagnetics. The ideas were first presented to the

electromagnetic community at the Boulder UR.SI Meettinig in 1992 [5.5].

We have pre~pared two manuscripts on this subject each of which includes both

theoretical analysis as well as computational resulti:. The actual computation of

the manifold of Pareto optimal points gives the design engineer a range of choices

making the trade-offs between different optimal choices explicit. The alist paper

describing these results, [3.5], Multici-iteria Optimization in Antenna Dejign ap-

Numnbers in parenthesis refer to papers and presentations listed in sections 3 and 5.
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peared in 1992. A second paper [5.12] Multicriteria Optimization in, Arrays was

presented at the JINA 92 meeting in Nice, France in November, 1992. This paper

addresses the use of such methods for antenna arrays and compares these results

with the well-known Dolph-Tchebyscheff result. We presented these results at a

seminar at Rome Laboratories, Hanscom AFB in January, 1993. At that time, it

became clear that an array problem previously considered by R.A. Shore of Rome

Laboratories could also be treated by multicriteria methods. It was agreed that we

would collaborate on the application of the multicriteria approach to this problem.

This work is ongoing.

The work described above includes numerical computations for problems in-

volving both arrays and conformal antennas. Related to these problems is that of

maximizing the power in a preassigned sector of the far field. We considered this

problem several years ago. In the present grant period, we returned to that prob-

lem and, in collaboration with B. Vainberg of the University of North Carolina at

Charlottesville, we have been able to use azymptotic methods to characterize the

optimal surface current in terms of a graph norm for the Neurnann-to-Diri-hlet

operator. In doing so, we get an explicit representation for this operator. These

results were presented [5.20] and will appear in [3.12].

2.2. Generalized Boundary Conditions

Under the present grant. we initiated a study of the N'ell-poszdness of resis-

tive and conductive boundazy velue problems for the acoustic case. Under the

present grant, we have completed a paper The Conductive Boundary Condition for

iMaxwells Equations in collaboration with A. Kirsch [3.,. The results were reported3B



at the IEEE/APS URSI International Symposium in Chicago in July, 1992, 15.8J.

These conditions, intended to model thin layer behavior, are neither pure

boundary conditions nor full transmission conditions, and involve using variable

resistivity or conductivity to model such layers. An alternative is the use of higher

order or generalized impedance conditions i.e., boundary conditions which involve

differential operators of higher than the order of the differential equation.

In collaboration with S. Przeidsiecki of the Polish Academy of Sciences, we

attempted a rigorous derivation of such conditions for the electromagnetic scattering

in the case of a plane stratified medium. Using Fourier transform techniques the

problem was transformed into one involving a set of transmission line equations. A

preliminary version of this work was presented in [5.6] but some detail: of this work

remain to be clarified before a manuscript can be completed.

2.3. Inverse Problems

We have pursued three lines of research on this topic. The first is the devel-

opment of an efficient computer algorithm for a variant of the shape identification

method based on complete families of solutions which we developed under the pre-

vious grant. Work with J. Jiang, a postdoctoral fellow, has yielded excellent results

for the inverse Dirichlet and Neumann problems in the acoustic case. The algo-

-ithlzn is able to return shapes from synthetic data using, respectively, only one or

two incident fields. The error is comparable to that occurring using other recently

developed methods, but has the great advantage of being able to provide the re-

constructions with significantly less data. Re_:ults were presented at the APS/URSI

International Symposium in Ann Arbor in June 1993 [5.13] and a paper describing

4



the numerical results is currently in preparation.

A second line of attack on the shape identification problem again involved the

use of complete families but instead of simultaneously reconstructing the shape and

the solution of a scattering problem for particular boundary data, in this approach

we attempt to reconstruct the shape and the Green's function for a given class of

boundary conditions, ;iz. Dirichlet, Neumann or Robin. One advantage of this

approach, in contrast to almost all other shape reconstruction methods, is that it

readily leads to an algorithm even when scattered field data may only be measured

in the backscattering direction. Preliminary results have been repoi ted in [5.111 and

[5.16) and a paper describing the method is under preparation. However as yet no

numerical experiments have been performed to test the feasibility of the approach.

The third approach we followed concerned the iterative technique developed

under AFOSR support that has proven successful in parameter identification prob-

lems; specifically reconstructing complex indices of refraction of two dimensional

objects from measurements of the fields scattered when the object is illuminated

by known sources. Essentially, the method involves casting the problem as an op-

timization problem in which the cost functional consists of two terms, one is the

defect in matching measured data with fields due to a particular index of refrac-

tion and the second is the state equation, a set of tegral equations in which the

index appears and which the fields must satisfy. There are essentially two types

of unknown functions, the index of refraction and the total field for each excita-

tion. Each of these functions is constructed iterat~vely using linear updating, the

nonlinear nature of their interrelationship being, nevertheless, retained.

5



Previous versions of this algorithm led to an empirically deternmined limit of

reconstructibility of kdlXmaz I < 67r where k is the w we number, d a characteristic

diameter of the scatterer, and IXmaxI is the largest contrast that can be recon-

structed. No a priori information about the scatterer was used. This work is

described in [3.8], [3.9], [5.1], [5.2] [5.3] and [5.10].

Under the current grant, however, we exploited the fact that in most problems

of interest, the imaginary part of the contrast is non-negative. Incorporating this

constraint into the algorithm resulted in a remarkable improvement in the limit of

reconstructibility. In fact, using the fact that for extremely good conductors the

contrast is essentially large positive imaginary, we successfully reconstructed the

boundary of a perfect conductor. In a dramatic demonstration of the efficacy of

the method, experimental data provided by Rome Laboratories, HIanscom AFB for

a perfectly conducting body was -!.izd in our algorithm in a "blind" reconstruction.

That is, the actual gecmnetry of the object was not provided, only the experimen-

tal scattering data. The algorithm successfully reconstructed the unknown target.

Parts of these results have been reported in invited talks in the British Applied Math

Colloquium [5.15], the XXIV General Assembly of URSI [5.17] and the Mathemat-

ics Forschung Institut, Oberwolfach [5.18]. A paper describing the modifications

of the algorithm, Two Dimensional Location and Shape ReconAruction [3.10] has
a d in Radio Science and nother paper describir•g the "lInd reconstruction

has been completed [3.13]. The experimental work at Rome Laboratories is be-

ing done by Robert McGahan and Marc Cot6 while the theoretical and numerical

work is being done in collaboration with Peter van den Berg of Delft University of

Technology in the Netherlands.

63
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2.4. Related Work

Work in the three main problem areas described in sections 2.1 - 2.3, was

accompanied by some significant related activity which is briefly summarized in

this section.

In addition to the applications of optimization methods in antenna problems

it was shown that a similar approach could be successfully followed in a class of

free surface hydrodynamical problems [3.1], [3.3]. This included development of

a constructive method for finding the hull design which optimizes hydrodynamic

performance characteristics such as drag and added mass.

The iterative solution of the inverse problems, which has become a major and

productive component of the research program, was inspired by previous work on

iterative solutions of integral formulations of direct scattering problems. These iter-

ative methods were described in [5.9] and a comprehensive review of these methods

in electromagnetics was invited for inclusion in the 1990-1992 Review of Radio

Science [3.6]. In addition, uniquely solvable integral equations for electromagnetic

scattering from indentations in plane screens were devised [3.7], [5.4]. These equa-

tions have application to problems involving small cavities in otherwise smooth

surfaces. The subject of small scatterers was also pursued in other ways. Pre-

viously obtained results on applications of the Kelvin inversion to low frequency

scattering were used to obtain the solution of a canonical low frequency problem,

scattering by a concave object [5.7). The static image theory which attempts to

characterize scattered fields by equivalent image sources producing them was ex-

tended to the dielectric bphere [3.15], [5.14]. Finally the complete characterization
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of the low frequency 'expansion" of the scattered field in two dimensions, when

the field is no longer analytic in frequency, was accomplished for arbitrarily shaped

scatterers and, in fact, general second order elliptic equations [3.11].

3. Publications supported under AFOSR Grant No. 91-0277 (copies
included in the Appendix)

1. Recent Developments in Floating Body Problems, T. S. Angell, G. C. Hsaio
and R. E. Kleinman, in Mathematical Approaches in Hydrodynamics, Touvia
Miloh, ed., SIAM Publications, Phila., 141-152, 1991.

2. Antenna Control and Optimization, T. S. Angell, A. Kirsch and R. E. Klein-
man, Proc. IEEE, 79(1), 1559-1568, 1991 (invited paper).

3. A Constructive Method for Shape Optimization: A Problem in Hydromechan-
ics, T. S. Angell and R. E. Kleinman, IMA Journ. Appl. Math., 47, 265-281,
1991.

4. The Conductive Boundary Condition for Miaxwell's Equations, T. S. Angell
and A. Kirsch, SIAM J. Appl. Math, 52, 1597-1610, 1992.

5. Multicriteria Optimization in Antenna Design, T. S. Angell and A. Kirsch,
Math Methods in the Appl. Sciences, 15, 647-660, 1992.

6. Iterative Methods for Radio Wave Problems, R. E. Kleinman and P. M. van
den Berg, Review of Radio Science 1990-1992, W. Ross Stone, ed., Ox-ford
University Press, 1993, 57-74.

7. Electromagnetic Scattering by Indented Screens, J. S. Asvestas and R. E. Klein-
man, IEEE AP 42, 22-30, 1994.

8. A Modified Gradient Method for Two-Dimensional Problems in Tomography,
R. E. Kleinman and P. M. van den Berg, J. Comp. and Appl. Math, 42, 1992,
17-35.

9. An Extended Range Modified Gradient Technique for Profile Inversion, R. E.
Kleinman and P. M. van den Berg, Radio Science, 28, 1993, 877-884.

10. Two Dimensional Location and Shape Reconstruction, R. E. Kleinman and P.
M. vNan den Berg, Radio Science 29, 1157-1169, 1994.

11. Full Low-Frequency Asymptotic Expansion for Elliptic Equations of Second
Order, R. E. Kleinman and B. Vainberg, in Mathematical and Numerical As-
pects of Wave Propagation, R. Kleinman, et al., eds., SIAM, Philadelphia, PA,
1993, 296-301.
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12. Asymptotic Approximation of Optimal Solutions of an Acoustic Radiation
Problem, T. S. Angell, R. E. Kleinman, and B. Vainberg, in Inverse Scat-
terinq and Potential Problernms in Mathematical Physics, R. E. Kleinman, R.
Kress and E. Martensen, eds. Peter Lang, Frankfurt (in press).

13. Blind Shape Reconstruction from Experimental Data, P. M. van den Berg, M.
G. Cote and R. E. Kleinman, submitted to IEEE-AP.

14. Modified Green's Functions and Obstacle Reconstruction, R. E. Kleinman and
G. F. Roach, in preparation.

15. Low Frequency Image Theory for the Dielectric Sphere, I. J. Lindell, J. C- E.
Sten and R. E. Kleinman, J. Electromagnetic Waves and Applies., 8, 295-313,
1994.

16. Full Low-Frequency Asymptotic Expansion for Second-Order Elliptic Equa-
tions in Two Dimensions, R. E. Kleinman and B. Vainberg, Math. Methods in
the Appl. Sci., (to appear).

4. Research Personnel

T. E. Angell - Principal Investigator

R. E. Kleinman - Principal Investigator

P. M. van den Berg - Scientific Investigator

Xinming Jiang - Post Doctoral Investigator

Wen L:xin - Graduate Student

Note that Dr. Jiang and Ms. Wen received no direct support under the grant

but did work on grant related projects.

5a. Presentations supported under AFOSR Grant No. 91-0277

1. Two-Dimensional Profile Reconstruction, R. E. Kleinman and P. M. van den
Berg, North American Radio Science Meeting, URSI/IEEE-APS, London, On-
tario, June 1991.

2. Profile Inversion for Two Dimensional Scatterers, R. E. Kleinman and P. M.
"van den Berg, PIERS Symposium, Cambridge, MA, July 1991 (invited talk).



3. Iterative Methods for Electromagnetic Profile Inversion, R. E. Kleinman, X.
Jiang and P. M. van den Berg, ICIAM, Washington, D.C., July 1991.

4. The Far Field Scattered by Indented Screens, J. S. Asvestas and R. E. Klein-
man, National Radio Science Meeting, Boulder, CO, Jan. 1991.

5. A Novel Approach to Antenna Optimization, T. S. Angell, A. Kirsch and R.
E. Kleinman, National Radio Science Meeting, Boulder, CO, Jan. 1992.

6. A Rigorous Derivation of Higher Order Boundary Conditions in Electromag-
netic Scattering, T. S. Angell, R. E. Kleinman and S. Przeidziecki, Wave Phe-
nornena II: Modern Theory and Applications, Edmonton, Alberta, June 1991.

7. Low Frequency Electromagnetic Scattering from Non Convex Bodies, D. Gin-
tdes, K. Kiriaki and R. E. tleinnian, IEEE/!.PS-URSI International Sympo-
sium, Chicago, 1L, July 1992.

8. Conductive Problems in Scattering with kMaxwell's Equation, T. S. Angell,
A. Kirsch and R. E. Kieinman, IEEE/APS-URSI International Symposium,
Chicago, IL, July 1992.

9. Iterative Methods for Intermediate Frequencies, R. E. Kleinman and P. M. vaxi
den Berg, IEEE/APS-URSI International Symposium, Chicago, IL, July 1992
(invited paper).

10. An Extended Range Modified Gradient Technique for Profile Inversion, R. E.
Kleinman and P. M. van den Berg, URSI International Symposium on Electro-
magnetic Theory, Sydney, Australia, August 1992.

11. Obstacle Reconstruction from Back Scattered Data, R. E. Kleinman and G.
F. Roach, URSI International Symposium on Electromagnetic Theory, Sydney,
Australia, August 1992.

12. Multicriteria Optimization in Arrays, T. S. Angell, R. E. Kleinman and A.
Kirsch, Proceedings of JINA 92 Congress, Nice, France, 1992.

13. A New Inversion Technique for Shape Reconstruction, T. S. Angell, Xinming
Jiang and R. E. Kleinman, URSI Radio Science Meeting, Ann Arbor, MI, June
1993.

14. Low Frequency Image Theory for the Dielectric Sphere, I.V. Lindell and R.. E.
Kleinman, National Radio Science Meeting, Boulder, CO, Jan. 1992.

15. Modified Gradient Techniques for Profile Inversion, R. E. Kleinman, P. M. van
den Berg, British Applied Math Colloquium, Glasgow, Scotland, April, 1993.

16. Modified Green's Functions and Obstacle Reconstruction, G. F. Roach and
R. E. Kleinman, British Applied Math Colloquium, Glasgow. Scotland, April
1993.
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17. Profile Inversion by Simultaneous Error Reduction, R. E. XleAinman and P. M.
van den Berg, XXIVth General Assembly of URSI, Kyoto. Japan, Augut A993.

IS. Reconstruction of +he Location, Shape, and Composition of a Scattering Cb-
je-.t, P. M. van den Berg and R. F. Kleinman, Oberwolfach Conference, Meth-
oden und Verfahren der Mathematischen Physik, Dec. 1993.

19. Full Low-Frequency Asymptotic Expansion tor Elliptic Equations of Second
Order, R. E. Kleinman and B. Vanberg, SIAM-INRIA Conference on Mathe-
matical and Numerical Aspects of Wdve Prpagation, Nzwark, DE June 1993.

20. Asymptotic Approximation of Optimal Solutions of an Acoustic Ra2iation
Problem, T. S. Angell, R. E. Kleinman and B. Vainberg, Oberwolfach Confer-

ence. Mt.thoden und Verfahren der Mathemati,.han Physik, December 1993.

21. New Approaches to Numerical Solutions of Integral Equations, R. E. Kleinman,
International Confercnce on Applied and Industrial Mathematics, Link6ping,
Sweden, June 1994.

5b. Interactions with other Laboratories

Rome Laboratory, Hanscom AFB: Collaboration with personnel was initiated

and is ongoing in two areas. With R. A. Shore there is a project on applying6 multi-

criteria optimization methods to a class of antenna problems previously treated by

other methods. With R. V. McGahan and M. G. Cot6 there is a project devoted

to usiug experimental microwave scattering data as the input in inverse scattering

algorithms. This collaboration has resulted in one joint paper submitted for publica-

tion and a cooperative effort to organize a wor'shop on inversion using experimental

data.

Laboratory for Electromagnetic Research, Delft University of Technology, The

Netherlands: Peter -an den Berg of that Laboratory has played a key role in de-

veloping robust inversion algorithm and has collaborated on 13 of the papers and

presentations listed in Sections 3 and 5a.
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Institute for Applied Mathematics, University of Erlangen, Nutenberg, Ger-

many: Andreas Kirsch of the Institute has collaborated on the work on resistive

boundary conditions and is currently involved in a joint book project on optimiza-

tion methods in antenna theory.

Laboratory for Signals and Systems, Nat:Dnal Center for Scientific Research

(CNRS), France: Collaboration with D. Lesselier and B. Duchene of that Labora-

tory has begun on extending inversion methods developed under the grant to more

complicated problems such as detecting and identifying objects buried in a halfspace

from scattering data collected above the half space.

Electronics Laboratory, University of Nice, Sophia Antipolis: Collaboration

Aith Christian Pichot on computing Newton-Kantorovich and modified gradient

methods for inverse scattering.

6. Discoveries inventions or patent disclosures

Theru have been no patent applications or inventions under the grant. The

research results reported in Sections 3 and 5a are all in their own way discoveries.

Perhaps the most striking of these was the success of our modified gradient algorithm

in reconstructing the shape and location of an object from experimental scattering

data in a "blind" test as described in [3.14].
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Chapter 10

Recent Developments in Floating
Body Problems

T. S. Angtil. G. C. Hsiao, and R. E. Kleinman

10.1. Introduction.
In this paper we outline some recent developments in the problem of'a body floating
on a linearized free surf ac subject to a time harmonic excitlg force. This prob-
lem wan well known even before Fritz John (I1I derived a Given's function satisfying
the linearized free surface condition and used that function to prove existence and
uniqueness of solutions aiang integral equation techniques. John followed a standard
approach to boundary value problems. First he proved uniqueness, that is there was
at m•ost one solution of the boundary value problem. Then he formulated an inte.
gral equation whose solutions lead, through an integral representation, to a solution
of the boundary value problem, which, since only one was possible, was the unique
solution. The existence of a unique solution of the integral equation was established '
using Fredholm theory. John recognized the existence of "irregular frequencies', dis-
crete real values of the wave number for which this integral equation was not uniquely
solvable and he was forced to adopt a more complicated method explicitly involving
the eigenfunc-ions for proving existence and uniqueness for these anomolous values of
the wave number. The problem of formulating uniqu-ly solvable integral equations for
all frequencies, suitable for numerical solu.ion, has occupied a central position in free
surface hydrodynamics for decades. In order to apply the results of potential theory.
John made a number of geometric assumptions on the shape of the ship hull. These
essentially reduced to r.auirinj that the closed surface formed by a ship hull and its
reflection in the free surface formed a smooth (twire differentiable) convex surface.
This restriction implies that the ship hull intersects the free surface normally and pre-
cludes discontinuities in curvature even on the center plane. Considerable attention.
has been directed toward relaxing thes assumptions.

In this paper we will summarize some recent developments in a number of aeas
related to the floating body problem. Specifically we will review a number of uniquely

.solvable integral equations for non-smooth hulls, the present state of attempts to
establish -at existence of 'weak" solutions, and some related optimization problems
in hull design.

10.2. Notation.
-We will concentrate on the three dimensional finite depth case as illustrated in Fig.
I. We fix-the~origm of a cartesian coordinate system-in the water plane that is, the
continuation into the ship of the mean free surface so that th. z-y plane consists of
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142 T. S. Angell, G. C. Hsiso and R. E. Kleinman

CA'

Fig. I

the mean free surface e/ together with the water plane c,. The fluid domain D÷ is
bounded by the linearized free surface c/, the wetted portion of the ship hull c, and
the bottom cl which is asumed flat at a depth h, that is, cS is the plane x = -h.
Let D- denote the domain bounded by c, and c.. We denote position vectors by
"p = (z,y, z) and often also employ polar coordinates x = pcosO, y = psinO in the
n-Y plane.

The time harmonic three dimensional floating body problem with linearized free
surface cozidition is usually formulated in terms of a classical boundary value problem
for the complex velocity potential ý(p) in the fluid domain as follows. Find 0 such
that

(la) V3 =0 in D+,

(lb) 4 = V on c,
5-n

(Ic) =0 On CB,
On

(ld) -+k=_L+k•=0 onc 1 ,

Op OI (lc) a_• _ i o6 (p-t12) as p .- o,

where k is the wave number with Im k > 0, ko is the positive real root of

(2) k - ko t•rh koh,

where -L denotes the normal derivative dir.cted into D+. The function V is the
specified boundary data on the ship hull and may be chosen so that 0 represents any
of the possible radiation components or a diffraction potential. Mathematically it is
necessary to specify requirements, on ca, the sense in which A is to be taken on c.,
anýd t4eý class of t.cti •Q.i4•z•t. which the datL V is to be chowee in order to have a
well posed (that is, uniquely solvable) boundary value problem.

We will denote by {vi} the set )f Ursell's multiple potentials for the three dimen-
sional finite depth cam (Thorne [251, Martin [191) which have the property ofmatisfying
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the boundary conditions on c! and ci. We use the standard multi-index notation

I = (n,m,j); n,m= 0,1,2,...; j = 1,2; Ili =-n+m+j

and define the multipole potentials explicitly to be

t (p) := ',mm(p, :)[.cosmd'+--(l1 -j) sinmtoo -

where
0Csh ý(z + h)JC(iP)

~~ -j nh4h -kcoshý_h

0.,n(p, Z) : = j ,t+2..-i(ý + k)ef Jm,(4p) dC

I. r y•,+' cosh i(z + h)J, (4p)

7n- Tt10 snh ýh - kcosit 4h >

the contour passing below the singularity ko in the complex t-plane. The set {vi) is
complete an L2(Co) provided c. satisfies the rather stringenL smoothness conditions of
John (Martin (20]).

We may now introduce three Green's functions which figure prominently in the in-
tegral equation formulation. First is an elementary source whicu satisfies the boundary
condition on ca but not on el:

•'o(p, q) :=___ 2srip - q[ 2 7rlp -j

where
(z, y, -z - 2h)

Next is a Green's function which satisfies the boundary condition on c13 and the
fret surface condition on ci. This is the Green's function of John for which various
representations are known (e.g. Weyhausen and Laitone [28], Noblesse [21]). One such
'is

y~j(p, q) 0 k ( kl. R) cosh k,,%(zP + h) cosh k,(, Z + h)
E h-k, C - W + k•.•

where

R V +P3 -2p~ppcos(O - Of)

and k. are the roots of equation (2) with non-negative real and imaginar) parts. This
Green's function has a source strength double that of 70 on cf and c..

Finally we define a modified Green's function (Ursell [26]) to be

7M(P, q):= tj(p, q) + E aivi(p)vi(q)
Il=0

where the coefficients al are subject to two important restrictions. First the resulting
series should be convergent for all p,q E 7+, e.g. jai I <- for. n, rn> 0, some
c < oo and Ml.= Z lviI and second ui ai < 0 (note that this condition differs from

pEI+
that given by Ursell [26] only because we have chosen a different sign convention for
7o and yi.)
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Now we have three Green's functions of ever increasing complexity beginning with
the relatively simple -o, the relatively conmplicated -j a.d the even more complicated
'yw. It should be remarked that all that we are presenting here for the finite depth cae
may be repeated for inf-ite depths where the potentials ut and the Green's functions
ij and yu simplify considerably.

We can use theoe Green's functions to define single and double layer potentials
as follows: let -y denote any one of /o, ,yj or -M and c denote any one of the surfaces
c,, c., or c,; let u be a function (density) defined on C, then define

Su := (P,q)u(q)dsq , peD+UD- ,

Du :/ -(p, q)u(q) dsq pED+uD_,

Y0U 22-u(q) dsq , PEpc
C

Ku:--J p( q)u(q)dsq , pE ,
C

and
NVu=, U (p, q) u (q) d,ý , p E .

Note that 1'u is the direct value of Du on c and Su may be extended to all points on
the closure of D+-U D-, We will append subscripts to indicate the particular choice
of -f and c, e.g.,

5',,0u : -/to(P, q)ut(q) dig

We remark that the density u and the surface c must be consistently restricted in
order for the functions given above to make sense (e.g. Kleinman (12]).

Having established this notation we may now proceed to questions of uniquely
solvable integral equations.

10.3.. Uniquely Solvable Integral Equations.

The uniqucness theorem for the floating body problem is easily proved if Im k > 0 for
any c; for which Green's theorem is available in D+., This is shown by John t111 (see
also Kleinman [12]). However when Im k = 0 additional restrictions on the geometry
of ca are needed, the essential one being that vertical rays from the free surface c!
intersect the ship hull at most once. However it is not necessary to require normal
intersections at the free surface (Kuznetsov and Maz'ya [13], Kleinxan [12]) nor in
fact is it necessary to insist that c. be smooth. Even with shapes such as those shown
in Fig. 2, uniqueness for the floating body problem has been shown provided the
angles indicated in Fig. 2 are restricted; 0 < a•< 7r/2 and 0 < 3 < 2Tr. Precise
conditions on c, are given by Kleinman (12] and Wienert [30]. Even the condition
that vertical rays from el intersect c, at most once may be relaxed, o > w/2 in Fig.
2, as was shown by Simon. and Ursell [24] in tht two-dimensional case. Similar results
in three-dimensions art eagerly awaited.

With this uniqueness result for the boundary value problem we know that if an
integral equati..n leads to a representation of a solution of the floating body problem

9 - I
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a(

Fig. 2

it must be the solution. In the notation of the previous section a Green's theorem
approach leads to a representation of the solution of the floating body problem as

I

where w is a ,solution of the boundary integral equation

(4) W + •W = $,, v , p C- C. .

Alternatively, using a source distribution approach

(5) -. ,jw , pGD+

where W is a solution of

(6) w +K,,jw=V , pEc,.

Note that while we =-- the ln. . ... e.r de ds-i,-nate the solution of the boundary inte-
ral equations in each case, these solutions will be different. In the Green's approach;

equation (4), w is the unknown value of 0 on c, whereas in layer approach it is not.
If lm k > 0 then either integral equation is uniquely solvable. Hlowever, if Im k = 0

there will occur discrete values of k (irregular frequencies) for which there will exist
non-trivial solutions of the homogeneous equations

w+ 1.*jw=0 and w+T 5 ,jw=0.

The same values of k will be irregular for both equations but the corresponding solu-
tion. (eigenfunctions) will be different.

For Im k = 0 we list now a number of boundary integral equations which are
uniquely solvable together with the corresponding representation of the velocity po-
tential in the fluid domain.
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Boundary Integral Equation Representation of Solution
in D+

(7) w + ,jw+7N,.j=w S jV +t7(K,.jV - V) 6 = - P.,JW + 1S.,jV
tin 'q $0

(8) w + K.,ju, + i7 N,.,,w = V = S..jw-I -7D,,Jw

Imn 1- 0

(9) W~ + RKa.MW = SJMV 0 --- JD,,.ww + JS,,MwV

(10) w + K.,mw= V 0 = S,,MW

(u1) ,, + ,s..t + ,fK..,, = s.,.• V A-•,.,w+ j s.,.;V

(12) w + aow + ,o w + k S,,oW = S,.oV P= -½,.sw- • Djow
-,ds,,ow + ½S,.oV

(13) f w(q) -i(q)ds, = f V(q)v,(q)dos, 4. -½D.,.w+ JS,,.rV
C. C.

0l, = 0,1,2,...

We assert that all of these integral equations are uniquely solvable howeven it
must be quickly added that rigorous existence proofs have not been carried out in
any case. Such proofs are especially difficult for those equations involving the hyper--
singular operator .N,,j. Nonethelm e.istence of a unique solution of a complicated
regularized form of (7) has been proven by Wienert [301 for nonasmooth surfaces an
depicted in Fig. 2 for all functions V which are integrable on c,. Then, following the
procedure described earlier, this produces the solution of the boundary value problem.
Once existence of this solution is established, any integral equation derived by a valid
use of Green's theorem will be assured of having at least one solution. The only
remaining question is uniqueness and this has been eatablished for all of the equations
in the table.

Uniqueness for equations (7) and (8) was established by Kleinman [12] (s•e also Lee
and Sclavounos, (15]) and numerical results using these equations have been presented
by Lee and Sc!?vounoe [151 and by Lau and Hearn [14]. Note that t.xistetc- for the
layer equation (8) still uncertain.

The modified Green's functions used in equations (9) and (10) stein from the work
of Ursel [26] and Martin [19] and Urwe1's proof establishes uniqueness. As before, ex--
istence for the equation stemming from the as of Green's theorem, issured via the
argument based ultimately on Witnert's work, while existence for (10) is uncertaiu.
However, since no hypersingular operators are involved, the theory of boundary inte-
gral operators for potential theory in nonsmooth domains (Wendland [291, Burago and
Maz'ya (5], Kleinman [12]) should sufice to apply to establish existence and unique-
ness for both these equations. The details have not been carried out however. It
should be noted that a related modification of the Green's function in which only one
multipole potential was ad ied underlay the work of Ogilvie and Shin [22] however
while this was shown to eliminate one irregular frequency it will not eliminate all
irregular frequencies.

Note that equatioms (7)-(10) are boundary integral equations on c,. only while
equations (11) and (12) are not. Equation (11) is usually attributed to Ohmatsu [231
who in turn credits Wood [31]. Note that the integral equation is over both c, and
c,. while the representatloki involves the restriction of the solution to c. Ohmatsu
proved uniqueness (see also Kleinman [12], Chang and Pien [61 and, for an alternative

__ II ll~ II II
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but similar approach, Fernandez, [9]); Equation (11) employs the simplest Green's
function at the cost of integrals over the entire free surface cf. Originally derived by
Bai and Yeurg [4] and Yeung [32], uniqueness was rigorously established 1", A.rtgell et
al. [l1. Numerical work has been doic by Bai and Yeung and, for the two dimensional
case, by Lia [18]

Finally equation (13) is not strictly a boundary integral equation bt-,i an infinite
set of moment equationj, the so-called null field equations and uniqueness has been
shown by Martin [191, [20]. One way of arriving at the null field equations is to
employ Green's theorem in D-. Another approach involving this idiea supplements
the boundary integral equation on c, with the Green's identity evaluated at specific
points in D-. However adding only a finite number of such points does not suffice
to establish uniqueness for all k. Nevertheless this method originated by Schenck has
enjoyed numerical success [14].

10.4. Optimal Design.
In this section we turn to certain optimization problems rrlatrd to the optimal det.ign
of the shape of a floating body. Regardless of whether the body is fully or only partially
submerged, the quaniities of physical interest include not only the wave patterns which
can be derived from the velocity potential but also functionals of the potential such as
added mass and damping factors which measure the distribution of energy in the fluid
(see e.g. Wehausen and Laitone [28], p. 567). These factors are, of course, dependant
upon the geometry of the body and it is this dependance which we intend to study
in this section. In particular we discuss how these quantities may be optimized over
restricted classes of body geometry.

As the quantities to be optimized will depend on the velocity potential which in
turn depends on the choice of surface, we will need to consider a fainily of boundary
value problems generated by an appropriately chosen collection of possible surfaces.
If we denote this collection of surfaces by n then a boundary value problem (la)-(le)
may be defined for each c, E fl. The fluid domain D+ depends on c, and is denoted
by D+(s). The corresponding solution may be indexed as 0, to explicitly exhibit its
dependence on c,. Note that, because we are considering a family of boundary value
problems, the data V in (1b) must be defined throughout the domain formed by the
union of all surfaces in fQ. This is indeed the cue, for example for heaving motion
where V = -i i.

The optimization problems under consideration involve functionals defined on
the space of velocity potentials, that is. real numbers associated with each velocity
potential which i.-i turn depends on c, and V. When it is convenient to explicitly show
this dependence we will write 4,(p, V). We confine our discussion to the problem of
minimization since maximizing a functional L is equivalent to minimizing -L. Thus
:ith L.denoting the functional, the optimization problem is that of finding C,, E Qi
for a given V such that

L(c,., V) < L(c,, V) for all c, G S.

Specific choices of L may be made to embody desirable design criteria. In particular
we may choose the functional to be the added mass in which case

L(c,, V) = Re di,(c, V)V(p)ds

Note that by apfropriate choice of V the functional will represent the added mass
associated with any of the six rigid body motions, diffraction or combinations of these
motions.

[I I H I [
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For such optimization problems, there are two basic questions: that of the exis-
tence of optimal solutions and, once existence is assured, that of the computation of
the optimal solution. We will consider these questions in turn.

In order to show that an optimal solution exists we use a reformulation of the
boundary value problem in terms of a uniquely solvable boundary integral equation
which will exhibit, explicitly, the dependance of the solution on the surface c,. This
is needed in order to establish the continuous dependance of the solution 0,, not
only with respect to the data V which is standaurd, but also with respect to the
surface c,. This is a more difficult mathematical problem. One method of proof
paralleling that used by Angedl et al. [2] and Angell and Kleinman [3] is to introduce
an explicit parameterization of the admissable surfaces and then transform the integral
equations on ca to equations on a reference surface by introducing the Jacobian of
the transformation. This esentially moves the dependence on the surface from the
solution to the (now more complicated) kernel of the integral equation in which form
the continuity is deduced. The technicalities are by no means trivial, even when the
admissable surfaces are smooth. For non-smooth surfaces such as those depicted in
Fig. 2, the details have yet to appear although the uniquel) solvable integral equations
of Wienert [30] are thought to provide what is needed for this approach. Once the
continuity of the functional L is established on a suitably restricted class of admissable
surfaces, it follows that L will asume its absolute minimum on this class.

"Turning now to the question of developing a constructive method to approximate
the optimal hull configuration, we can extend the method used in [3] to treat the
totaly submerged body to the more difflculL case discussed here. The constructive
method proposed in [3] relies, not on the integral equation formulation, but rather on
the availability of an appropriate complete familX,9f solutions which we take to be
Ursell's multipoiepotentials {ft) introduced previously, The completness properties,
at least for the smooth case, were established by Martin [20] for the two-dimensional
infinite depth case. Similar results for the present case remain to be established.

Our construction procedure is a penalization method. Such methods usually in-
volve the introduction of additional terms to the cost functional involving both the
partial differential operatpr and Yaruous initial aud boundary conditions. The use of
complete families allows us to simplify the method by introducing only the penaliza.
tion term corresponding to the boundary condition on the (unknown) hull.

Specifically we approximate ý by a linear combination of multipole potentials each
of which satisfies all conditions of the boundary value problem (except the boundary
condition on c,) for every c. E 0. 'Then for fixed N we seek constants {ja0 )} nd
c(NV) (E Q which minimize

L(6N)E[at).c(N)] := Re a(N)vi(p)V(p)ds + f a( N)] j -- Vj2ds

This approach is completly analogous to that inti duced for the totaily submerged
body [3] where we have shown that the sequence of minimizing surfaces {c 4N)} eXits
and has cluster poiant and that these cluster points in turn approach a minimizer of
L(c., V) as i, - oo. Details of tLis approach for the floating body have yet to appear.

10.5. Weak Solutions.
In section 1.3 we discussed questions of existence and uniqueness of solutions of the
floating body problem, equation (la-le), from the viewpoint of boundary integral
equations. This indeed in the classical approach to existence for boundary value prob-
lems and of course also provides a basis for numerical solution such as the well known

S .... . . .. L ? i • " . .. -.. . . .. : L : _ I '•
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panel methods. However there is another approach which has seen considerable activ-
ity in the modern theory of partial differential equations. This involves a HUbert space
or variational approach and leads to so-called weak formulations and corresponding
weak solutions which form the basis of finite element methods. While this approach
has been used in water wave problems, a complete weak formulation and correspond-
ing existence and uniqueness results for the present problem are still not available.
One of the difficulties lies in the fact that the fluid domain is infinite and has an in-
finite boundary. Some success has been reported by truncating the fluid domain and
adapting available results in this simpler context Euvrard et al. [8], Bai and Yeung
[4), Yeung [32]. Kuznetsov and Maz'ya [13] considered the entire fluid domain but did
not establish existence solely in the weak context, depending instead on the boundary
integral results. Another attempt was presented by Lenior and Martin [17] but this
result was flawed as discovered by Ursell [27]. In the case when Im k > 0, a complete
weak approach has been established by Dcppel and Hsiao [7]. In this section we give
the essentials of this approach and indicate where difficulties remain.

We begin with the derivation of the sesquilincar fonn .for the problem. Let us
denote by ca the surface of a cylinder of radius which contains the ship hull (c. =
{(p, 9, -)Ip = a,0 < 0 < 2ir,0 < z < -h} and p < a for every p E c.). Applying
Green's theorem to the solution 0 and a test function Vk in the iluid domain within
the cylinder c. leads to

i vO ,dq - k f ds =[fV7ds+ Ian Vd

where Da. and ca denote the portion of D4. and cl within the cylinder c.. If it is true
that

jim f o~ds =0

we arrive at the equation

(14) B(O, 0) J7 .V "dsq - k•: Tds JVds

which implicitly defines the sesquilinear form B(O, 1b). However the radiation condition
(ie) assures only that = O(a-1 / 2 ) on cj hence the test function tP must have more
rapid decay z- a - oo in order for the integral over c. to vanish. Equation (14)
provides the basis for the weak formulation only after we specify the function spaces
(Hilbert spaces) in which the test functions lie and in which the solution is sought.
If the domain were finite then the standard energy space is HI which essentially
includes functions which are square integrable together with their first derivatives

over the domain. However for the problem at hand this space HI is rnot appropriate
for the solution 0 since 0 and its derivatives are not square integrable in D+ unless
limk >0.

For Im k = 0 it is necessary to choose a different function space setting in order for
equation (14) to be valid. The original boundary value problem dictates properties
that the solution space must have in particular regarding the growth as p - oo.
Tner,-forr wt choos- .6 to be in Hfo 4 (D+) by which we mean that 6 and its derivatives
t.re squai integrable in any finite subdomain of D4. and the restriction of 0 to cf is

square integrable on any finite subdomain of cl.
This is not sufficient to ensure that the radiation condition is fulfilled and there-

fore this condition must be imposed as an additional restriction. However with the

I I Il i l I I I l l
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"solution space" so chosen it is necessary that the test function 0 lie in a different
function space. A suitable choice is HI p(5+' by which we mean functions which,
together with their first derivatives, are square integrable in D+ and in addition each
function will vanish outside a bounded subdomain of 5+ (not necessarily the same
subdomain for every function).

Now a precise weak formulation of the floating body problem is the following:
given V E L2 (c,), find 0 e tH:(D+) which also satisfies the radiation condition (le)
such that equation (14) holds for all 4' E HJ:*MP(5+). A solution in this case is called a
weak solution of the floating body problem. The next step is to establish the existence
and uniqueness of a weak solution. Although progress in this direction has been made,
the complete proof has yet to appear. In order to give some idea of where difficulties
remain we will outline an approach when Irn k > 0 where existence and uniqueness
can be established.

When Imn k > 0 the classical radiation condition implies that solutions decay
exponentially as p -' oo. This means that Q, and its derivatives are square integrable
in D+ and 0 is square integrable on cf. Now we may choose the r:pace of test functions
as well as the solution space to be the same namely H := H. 'D+) n L2 (cf) equipped
with a special norm and inner product. We define the inner product on this space to
be

fJVO-V~dq +Jds
D4 cf

and the induced norm =161 --. This differs from the standard inner product
since there is no term of the form f Odq. However it has been showia by Doppel and

D+
Hsiao [7] that this term is unnecessary, that is, the norm defined above is equivalent to
the standard norm. Moreover the presence of the integral over the free surface enables
us to establish the following so-called c5 erciveness properly for the sesquilinear form
defined in (14). There exists a constant (which may dtpeucd on k) A(k) > 0 such that

JS(O, O)j >_. A(k)110112

for all 41 E H.
In addition the sesquilin-ar form is continuous in the sense that there is a constant

a such that
JB(O, o) 1 0_< , 11101l1,l

for all ý, 0 in H.
Finally the riht hand side of equation (14) defines a bounded linear functional

on H in the sense that

IfV~dsj :5 01ilW1
C.

for all V' E H where 3 is a constant.
The process of establishing these results is not trivial and details may be found

in [7]. However once they are established, the existence and uniqueness of a weak
solutioun is a consequence of the impprtant Lax-Milgram lemma, (see e.g. Friedman
[101).

By a weak solution is meant a function (h E 11 such that equation (14) is satisfied
for all V, E H. It is relatively easy to see that this weak solution will also satisfy the
requirements given earlier for Im k = 0.

In the case when [m k = 0, we would hope to establish similar results but the
previously mentioned breakdown of square integrability on D+ causes dificulties. It
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is possible to prove that the right h,-.nd side of equation (14) defines a bounded linn.ar
functional on YI,.P(D+) and it is also possible to establish the continuity of the
sesquilinear form. However the coerciveness property of the sesquilinear form has not.
been established and this is a problem of considerable magnitude.

An alternative approach to existence and uniqueness in the case Imk = 0 involves
a so-called "limiting absorption" principle see e.g. Leis (16]. This involves taking a
limit as Im k - 0 of solutions for Im k > 0, whose unique existence is known.

To our best knowledge the only attempt to follow this idea is contained in th!:
work of Lenoir and Martin [17] but their result is subject to question because of the
unavailability of a Rellich type lemma in this context.
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Antenna Control and Optimization

THOMAS S. ANGELL, ANDREAS KIRSCH, AND RALPH E. KLEINMAN

Invited Paper

A class of radiation problems is considered wherein an arbitrary closed three-dimensional bodies. Rather than consider ele-
smooth surface on which currents may be induced is treated as mentary radiators mounted on conducting bodies we tieat
an antenna. A variety of measures of antenna performance are the entire body as an antenna and address the question of de-
defined in terms of fwsctionals of the radiation panern. These in
turn give rise to a class of optimization problems in which the termining that surface current distribution which optimizes
current distribution is sought which maximizes or minimizes one or some antenna performance characteristic. Wt state at the
another of the antenna performancefunctionals. A general method, outset that we will make no attempt to discuss practical
based on the use of vector wave functions, of reducing each methods for producing particular current distributions. Such
problem to one in finite dimensions is presented. Some numelŽ.-21 questions are beyond the scope of this paper. Rather,
examples are presented to illustrate results attainable by these it is our intention to pre~ent the analysis of particular
methods.

mathematical models which can be useful in engineering

I. INTRODUCTION AND BASIC PROBLEMS design, if in no other way, at least in so far as it clarifies
theoretical limits.

Antennas, devices for transmitting or receiving electro- In this spirit, we will consider a prescribed radiating
magnetic energy, take on a variety of physical forms. structure D_, with boundary S, as some subset of the
They ca" be as simple as a single radiating dipole, or far usual three-dimensional space, which represents a physical
more coreplicated structures consisting of nets of wires or body capable of supporting a flow of electric current. We
solid conducting surfaces. In any specific case, questions assume that D_ contains the origin of coordinates. We will
arise from the desire to control and even optimize the also assume that the boundary S is smooth (no edges or
performance of the radiating structure through appropriate corners) and denote the connected exterior region by D,..
"feeding." In this paper, we wish to review some corn- We denote points by their position vectors x and y; if x E S
mon themes arising in response to these questions and to then the normal to S at the point z will be written fix. We
present a general mathematical formulation which, if not will adopt the convention that the unit normal to S at any
encompassing all such problems, at least may serve as a of its points is directed into the exterior domain D,.; the
unifying framework within which we may fruitfully study a derivative in the direction of iix will be denoted by 8/8nz.
significant portion of such applications. In this introductory We will write r = Ixi for the radial variable in spherical
section we will set notation and formulate some specific coordinates and i = x/r as the unit radial vector. In
radiation problems. The second section is dedicated to a spherical coordinates i = (sin 0 cos o, sin 0 sin ýo, cos 9).
discussion of various measures of antenna performance and Suppose that the regin D.. exterior to this body supports
the formulation of some typical, and we believe important, an electromagnetic field, denoted as usual by the pair
optimization problems. The remaining sections are devoted (E. H). Assuming harmonic time dependence e-'6", this
to particular case studies, field is required to satisfy the time-harmonic form of the

The most common class of antenna optimization prob- Maxwell equations
lems concerns arrays of elementary radiators and the lit-
erature abounds in papers dealing with such structures.
Here we treat a different class of problems, those involving
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also support such a field (with different k, Z, Y) as is the or in the notation of (1.3), P =imr-,, P1.. With (1.6)
case in the transmission problems aiising in electromagnetic and (1.7), 'P may be written
scattering tieory. We will not discuss these problems here. YO f

We may imagine, in the case of a radiating structure, that V = -2-J IF(i)I2 ds (1.9)
the electromagnetic field is produced by a surface current,

J, with total power given by where S1 is the unit sphere. In terms of the L2-norm,

Z7o IJI2 ds (1.2) P = L JIF11• 2 (s)" (1.10)

where IJI denotes the magnitude of the complex vector J We use the notation 11. I2I(S) to denote the L 2 norm of
and ds is the element of surface area (on the unit sphere tangential vectors on S1 , the surface of the unit sphere, and
da = sin 0 dO do). The surface current J has the same units 11 ' IIL2,(S) to denote the L2 norm of tangential vectors on
as H (see (1.5) below) and the factor Zo ensures that (1.2) the surface S. It is important to distinguish between these
has the units of power. Similarly, we may define the total two norms.
power in the near field in terms of the familiar Poynting As the problems of antenna control that we intend to dis-
vector integrated over a sphere large enough to enclose the cuss are those in which some numerical measure involving
antenna. If such a sphere is denoted by S., then the integral the far field is to be optimized by selecting the appropriate

1 surface current J from some preassigned subset of L•(S),
P. Re fi . E x .da (1.3) it is necessary for us first to understand the mathematical

2 H s relationship betw;...- the current on the radiating body and

represents the power radiated through the sphere S. the far field o' the resulting exterior fields. The fact that
Prescribing the current J on S provides the boundary data there exist uni lue solu :ions of the exterior boundary value

required for a well posed radiation problem. Specifically, problem guara ftees die existence of an operator KC which

the radiation problem consists of finding the pair (E, H) associates to each admissible current J tha corresponding
such that Maxwell's equations (1.la)-(1.1b) are satisfied in far field ?. That is, for each admissible J on S there is a
D+ together with the Silver-M•11er radiation condition unique solution of the boundary value problexa, equations

(1.1 a,b), (1.4) and (1.5), and this solution, in the far field,
i x V x E + ikE = o(1/r) has a unique radiation pattern F, see equations (1.6) and

as r -• no (1.7), i.e., iC J = F. This operator K• is not explicitly

:i x V x H + ikH = o(1/r) (1.4) known except in special cases but some of its important
properties are known. These may be iferred by examining

and satisfying the boundary condition the representation of the fields in termn, of dyadic Green's
functions [2], [3]:

f rxH=J on S. (1.5)

Calder6n [1] has shown that this problem has a unique H(*) = j J(Y) " VY x P(x.y) dsy (1.11a)

solution for every J E L2(S) where L 2(S) is the-set of all
vector functions, defined in S, whoie normal component f
vanishes and whose magnitude is square integrable. We E(X) - V x J(y) " Vy x 1'(x, y) ds3 (1.lIb)
consider the problem oI finding J so that the unique ikY0  is
solution of the radiation problem described by (1.1a), where 12 is the dyadic
(1.1b), (1.4), and (1.5) behaves optimally with respect to
one or another of the criteria described in Section II. =ria + r,2 + 1'3a3

In problems of control of antennas, the property of i, = 1.2. 3 are rectangular unit vectors, and the vector
interest is roost often the radiated far field. Recall that the fields l', i = 1.2.3, satisfy
fields E and H are known [4] to have the representation

Vx x Vx x 1'i - k~ri = .i6(•x - vj) (1.13a)
-- F£ +O ,r ---no (1.6)

r r2

)i xV xr,+ikri=o(1/r) as r.- oo (1.13b)

H(z) = Yo-- x F()i)+ O- , r - co. (1.7)

The vector function F, which has no radial component, Ax x Pi = 0 on S. (1.13c)
is called the radiation pattern. The power radiated into the The r, have the same asymptotic behavior as the fields E
far field is and H:

,P Re lim ~ih-E x f ds}' (1.8) ik
F, = -- Fi(.i.o) + O(1/r'2) (1.14)

1560 PROCEEDINGS OF THE IEEE. VOL ?9- NO. 10. OCMTER 1991



where the functions Fi, i = 1,2,3, arc analytic in the of the first kind by h,., we choose the collection of vector
sense that their Taylor expansions converge. If we define wave functions, defined in P.R3\{0},
the dyadic : {V x (xhn(kr)0n,bm),

3 V x V X (Xhn(kr).,m):
ii n= 1... ,oo, m= -n,...,n} (1.20)

then the far field pattern F is given by whose far fields form the collection
S. XXi-,'-X

F(i) = -Zoa x f J(') -V r(i, y) dsy. (1.16) { k-T--V ,,,, (V4,,, xx):

In spite of the fact that the kernel r7 (and hence P) is not n = m -n,...,n}. (1.21)
known explicitly except for certain special surfaces S, the
continuous differentiability of the functions F, in (1.14) For simplicity, we will reindex these families and write,

guarantees that the relation (1.16) defines the required
operator 1:. In addition the relation (1.16) ensures that K: g =
is compact, that is, sequences ({h} which are bounded in
Lt(S) are mapped into sequences {QCJn} which converge and
to a function in L (Sl) (more precisely a subsequence =
will converge). This property is of extreme importance
in proving the existence of optimal current distributions. Now define the set of tangential vector fields on the surface
Moreover, by Corollary (4.20) of Colton and Kress [4], /C S in terms of the restriction of 9 to S by
is a one-to-one mapping. We can also introduce the adjoint
operator A:* (also compact) which associates to each far {fs ( n

field F in L4(St) a corresponding .1 in L24(S) through the Then
defining relation f - K(.xg,). (1.22)

(A J.F)L2(s) -' (JA:F)L2(s) Since S is taken to be fixed we introduce a shorthand for

for all F E L2(S1 ), J. cL2(S). (1.17) elements of 9,(S)

where (., )L•(s) denotes the inner product in L4(S) and g = f x ,. (1.23)
similarly for Si. With this notarton we see that we c .n The usefulness of this family is expressed in the following
rewrite (1.9) as theormu.

. Theorem 1.1.: Let S be a smooth closed surface contain-
?(J) = (F, F)L (s,) = (•( "J J)L irg the origin in its interior. Then the family of functions

This form will be particularly useful in our later discussions. iQt(S) is complete and linearly independent in L2(S).
(1.16) is that, except in particular The proof is due to Mi.ller [7] who specifically appliedOne disadvantage of expliciisformferceptnd consequly the results of Calder6n [1], and Wilcox [5]. Moreover it is

situations, we have no explicit for f and consequently straightforward to establish the following.
no simple way to compute the far field generated by Corollary I.I.: The family of functions . is complete
a given surface current. Although there are a number and linearly independent in Lt4(Si).
of ways attacking this problem numerically, we want a Since the set !;t(S) is complete in Lt(S), any surface
method which will also prove amenable to the optimization current can be approximated to any desired dcgice of
problems which are our main concern. One such method accuracy by an appropriate linear combination of elements

involves the use of complete families of solutions whose of ac(S). Thus given a ny > 0 there exists an integer N

asymptotic properties are easily calculated. Such families of and coeflicierits cu g n any 1 . . .. N such that

functions are available in terms of a distribution of dipoles

in D- [1], [5] or alternatively as miultipoleu at the origin N

[6]. We choose the latter approach. Following MilUer [7] Ili - Z cn(lvNg' L2(s) < (2
we introduce the functions n=1

Here, the choice of coefficients depends on the number of
1 =Pn(COS 6) COS "P terms used in the approximation for, while the set C,(S)

n = 1 ... -,0, rn = 0,.... n is a complete linearly independent set, it is not in general

0,,, P,-"'(cos 0) sin mTp an orthogonal family.

1, . m =-1. -n (1.19) If we write
N

where P, are the associated Legendre functions of degree J(.V) = c ('2)5)
n and order m. Denoting the pherical Hiankel functions n=j
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then the corresponding far field FP'" is simply given by field and the power supplied to the antenna structure. In
IV particular, one proposal for the quality factor, Q, is

F(N=) = c ~v)f" (1.26) Q = Q(J) = Z2 IIJIll,2s /llIl2

the specific fonn of the f, being given in (1.21). Certainly, = Z_ IIJ.II Vs)/IIKJIl2(s,). (2.3)
since k is continuous and bounded, we have that We will use this form for illustration purposes only and refer

IkJ("') - KJIIL2,(s,) < c i IJ() - JI1L2(s) < cc (1.27) to the book of Rhodes [9] for a more complete discussion
of quality factors. We pause to remark that this definition

for some suitable constant c so that the far field F("N) like- of quality factor is connected with the far field operator in a
wise approximates F according to (1.27). Thus the use of fundamental way. Specifically using the far field operator KC
complete families of solutions will allow us to approximate
the far fields produced by given surface currents without IIkJllL7L(s)
the expl'cit knowledge of the Green's function. We remark sup1l2  u
that the dependence of the far field on the surface S, which JL(s) L cs)
is explicit in the use of Green's function, is present in the su -- >
approximation method in that the coefficients will depend 2 /oL(s
on S. It should be noted that these complete families have
been used successfully to solve the boundary value problem Hence,
by minimizing the error in satisfying the boundary condition
[8]. However there are many competitive methods, e.g., iJ f y Q(J) 1(2.5
boundary elemcnt or moment methods, which may well (
be superior for that purpose. Our use of these families The notions of directivity and radiation efficiency as
is motivated by their convenience in finding approximate given above by (2.1) and (2.2) respectively, represent an
solutions of the antenna optimization problems described idealization of quantities that can actually be measured. It is
in the next section rather than solving boundary value more realistic to interpret measurements of the intensity in
problems. the far field as averages over (perhaps small) patches of the

unit sphere. In particular let a(i) denote the characteristic
I1. MEAsuREs oF ANTENNA P.RFORMANCE function of a measurable sector of S1, i.e.:

Traditional measures of antenna performance involve a ,r 1. i; E sector
number of scalar quantities including power radiated into o•( 0, ) 0 sector.
the f-a field as given by (1.9). Other quantities which figure
in the literature as useful design parameters include direc- Then we may generalize the concepts of directivity and
nti'vit,, gain, and signal-to-noise ratio (SNR). The directivity radiation efficiency in u particular direction by replacing the
is defined as a normalized ratio of the power radiated in expressiori IF(i)I2 with an average over a sector containing
a particular direction to the total power radiated into the the particular direction i:
far field 1 , I]aFIIL2(5 )

D(3;) = 4r Yu iF( )F2 /. (2.1) is, a(:) , = IFala2 d1s (2.6)

The maximum directivity, i.e.. D := niaxi D(.+) is fre-

quently used as a mea.•ure of the ability of the antenna where a is the characteristic function of the sector. Then
to focus in a given direction. The gain, measured with 4r Y02 Ial•,F1 s
respect to a given direction, is defined as a normalized Diao= (2.7)
ratio of the power radiated in a given direction to the total 11I0La,1 s)

power fed to the antenna. In the present context we make
no assumption on the efficiency with which power fed to and
the antenna is converted into surface current J. Rather we 47r Y01 ,IaFI1,define the quantity radiation efficiency G[a] = (2.8)

11all'= s 2 IIJ 112 2(S)
C(.) = 4,r Y.J IF( l2/IIJ!)l(j ) (2.2)

arc the generalized directivity and radiation efficiency in
and the corresponding maximal radiation efficii,,y G the sector characterized by a. If the sector shrinks to rthi
maxt G-(:i). The quantity G(:i;) coincides with the usual point io (at~i) = 1. i = -io; at(:i) = 0 " 0 io), then the
concept of gain only if all the power fed to the antenna generalized directivity and radiation efficiency become the
were converted tc surface current. In addition there are Pointwise quantities given by (2.2) and (2.2). If the sectorvarious so-called "quality factors." defined differently by is the entire unit sphere (a:t () = 1. i E Sl) then
various authors, but all intended to measure the "efficiency"
of an antenna by comparing the power radiated into the far Dial] = 2 (2.9)
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and In addition, such quantities as the directivity or the quality
-1(.0 factor may well figure in the definition of admissible inputs.

G([] . (2.10) Thus for example, a bound on the quality factor limits the
amounts of energy stored in the near field. The relation

Thus the problem of maximizing the reciprocal of Q is (2.5) shows that Y0
2 Q is bounded by 1/111KII where )C

a special cast of the problem of maximizing the radiation is the far field operator. Insofar as the far-field operator is
efficiency Cn 1]. Corresponding to (2.5) it may be seen that determined by the physical structure of the antenna, e.g., its

47r Y IIo 11.II. shape, or the materials from which it is made, we can say
sup G[ca] = - (2.11) that antenna structuies with large values of 11C11 have low

JeL2(s) 110111L,(s) quality factors and hence store less energy in the near field.

Another performance criterion involves the concept of With these various measures of antenna performance in

noise. Noise may be characterized by a function w defined mind, a number of specific optimization problems may be
on the unit sphere which distorts the radiation pattern. A formulated. Roughly speaking, the optimization problems
measure of how much the radiated field is distorted by noise in the literature fall into two categories. The first, which

is given by we may call the synthesis approach, specifies a desired
far field pattern (which may or may not be realizable) and

S(i)2 J'F(.i)J' ds asks for an admissible current that will produce a far field
most closely approximating the desired pattern. The second,

and the SNR is defined to be more indirect approach, chooses some performance crite-

iF(i)12  i-ion associated intrinsically with the antenna and asks for
SNR (i) := "F d (2.12) that current which optimizes that criterion, as for example,

f& I ,3t)2 Ilp()12 as when one asks to maximize th, radiation efficiency. For

where the variables of integration in the denominator have the purposes of the present discussion we classify some

been changed to avoid confusion. Again, we may define a common unconstrained problems in the Table 1.

generalized SNR as All of the optimization problems listed in the third
column are of the form: find J, the surface current in U,

SFi2Sthe clss of admissible currents, which optimizes a cost
S ,] (a)' (2.13) functional. The cost functional (e.g., fd KJ- fl ds,

SNR1a] , PO , ( (1) fIa()) f ()J(&)I2 ds, etc.) associates a nonnegative real

Since we can relate the far field to the surface current number with each J in U and the optimization problem is
which generates it, then problems of optimizing a specific to find that J which produces the largest or smallest such
performance criterion can be viewed as particular cases number.
of the problem of maximizing a functional J(J) where It is often tde case that one performance criterion is used
the surface current J varies in some set of functions as a constraint in the optimization problem for one of the
on the surface S which represents physically realizable other criteria. Thus for example lCirsch and Wilde [12],
curnents. This requirement of physical realizability typically [13] have considered the problem of maximizing the SNR
introduces constraints in the optimization problem. If U subject to an equality constraint on the quality factor. More-
represents the set of realizable currents the constrained over, certain of these criteria, as with Kirsch and Wilde,
optimization problem is that of finding are chosen se that the optimization implicitly controls the

occurrence of undesirable effects. Clearly, maximizing the
sup J(J). (2.14) SNR inherently constrains the noise. Similarly maximizing
Jet" radiation efficiency involves a balance between the far field

The question of a concrete description of this set U is aii in the desired direction and the amount of power at the
engineering problem the details of which are beyond the radiating surface.
scope of the present discussion. One may refer to [10], Another approach is to use constraints which explicitly
[11] for typical examples. For mathematical reasons it is restrict input, or outputs. Consider, for example the gener-
necessary to require that U have certain properties, namely alized SNR with w chosen to be 1 - a. Then we have a
that it be closed, bounded, and convex, i.e., that it contains criterion which tends to increase the power in the desired
all line segments joining two points of U. In our examples sector while decreasing the power in the complement. This
we take only the most obvious constraint .;ets. In particular, can be viewed as one approach to maximizing power in
we constrain the total power on the antenna by taking the the beam while keeping power low in the side lobes.
bound Alternately, one could proceed as suggested by Angell and

" 1/2 KJeinman [14], by maximizing tie functional

IJIIL'2(s)-f/ IJ(z)12 ds) < M" (2.15)

for a suitable constant M, Such a constraint is intuitively
reasonable as it is certainly true that the power supplied to a F(x) 12 & (2.17)
an antenna is iimiied. Js
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Perform&=c Criterion Definition Optimiization Probiti

Pancrn matching to desired F(continuous) fs, JF(i) - k~(i*)12ds M21Ef.5,j~ JXIJ -ý kI'ds

Partern matching to desired F (discrete) Ziuct IFF)- ':2  AJý ~

Power in a swtor with chacactclistic a Y' f, a(ic)JF(&i)J2ds i ~ a(ic)I1J(i)J2 ds

Signal to noisenrtio _Fk11 K(t1772 W jr) Jr~r)12S maiXuJeU ,(If)al )J(jf)I3d.

Generalized signal to noise ratio f" ..(*.)I(*)1
2~i Is f.,*)IA-J(*)I

2
dA

J$1 ad '3 Wf*) d# iF ~M&XJEUI J5 d 513T*2IJ(.*) 2d.

Quality factorZ2 IJ2 ,f 1-@

Radiation ficiciecy 4jIF *i 4riEU W

Generalized radiatio2 efficieucy 4wY1 f.1 .1IFId. 4.f, aiiZj'2
d.

J"&~d* a mAXJE.J f5 d. jJis 71

Diractivity 4.YaiF*i2 mxe5
2 v1Jt

Genecralied directivity 4 fQ Oilj
2da MXE 4. f. aIJcjl2d.

is~~~ ~ ~ ~ I dsJa%7Zi# s do2s J.

with the side condition Since a current J which optimizes 'P(J: ci) also optimizes
any constant times ?(J; ud), .'%)r notational convenience

I1(, _ ar(:)) IF(&i)12 1 :5 M (2.18) we omit the factor JY in tht.- definition of P(J; or). We
f51 ~recall that the operato~r IC which maes L,(S) into L,(51)

for some suitable choicc of constant M. It would be and its adjoint K'~ which malps L' (S1 ) -. 42() are
interesting to compare the results of these two approaches. compact but not in generall krtown explicitly. Even so this

characterization of the cog! functional ?'(J, or) proves very

Ill1. MAXNIMING PowER RADIATEFD IN A SECTOR useful in determining approximate opti~mizeri.
We Uustate hisgeneal pproch o anenn optmiz- The first question to be answered, however, is whether

tion problems with one of the specific problems discussed in tcotmzto rbe a ouin htide hr

*the previous section, namely determining the current distr- exi4t Jo E U such that

bution on a surface S which optimizes the power radiated P(J, ci) S P(Jo, or) for all J E U. (3.3)
in a sector of SI with characteristic function ot. This is
done by reducing the problem to a generalized eigenvalue The answer is in the affirmative and moreover there is

*problem which is solved approximately by projection onto an optimizer J0 for which IIJOIIL"(S) =1 even though
a finite dimensional subspace. Here we will summarize the we search in U which contains surolace currants for which
detailed results of [14], [15], and [16]. IIJIllr(S) :5 1. Details may be found in [ 14".

As indicated in the table of Section II the optimizat~ion Having established existence of an optimal current it
problem is to find rtu.'ains to actually find it. To this ead the characterization

of the cost functional in termis of the operators KC and AC*
MaX] ck(:) 1ACj(j)I 2 dis in (3.2) proves useful. First obserie that the operator

where, using the constraint given in (2.15) with M =1, R ItA (S (S 35

u {J e2(S) I IIL()<1. (3.1) is self-adjoint, compact, and non-ncgativc since

*Since a(i) is real (a = 1 or 0) we may generalize (1.19) KJ) s=(( K)L sI
and write = I~aKJIJ(Z 0. (3.6)

P(J' a) =/Cr(i) IfCJI2 ds This means that the spectrum of R is discrete. real and
JS1 nonnegative and the multiplicity of all nonzero cigenvalues

=aAJKJ)L2S,is) =()C7 aPCj-J)L',J). is finite. It then follows that if (A0.Jo) is an eigeii-

(3.2) value-eigenfunction pail for R such that A0 is the largest

1564 PROCEEDINGS 0OF THE IEEL_ VOL 79. NO. 10. OCTOBER 1991

__=OEI



eigenvalue cigenvector (Co,,) (there may be more than one) of the

sup W, J)L(s) W(1•o, JO)L2(o, = A. (3.7) generalized algebraic eigenvalue equation

JIEU, N .N

This reduces the optimization problem to an cigenvaluc Z Cn(afIfm)j(s,) A(.) 2

problem.. .z,= (3.15")

The next step is to provide a method for approximating The fact that the solution of this finite dimensional problem
the optimizer Jo, the associated far field Fo and the optimal can be used to approximate the solution the original opti-
power P(Jo, a) = A0. Here we make use of the complete mization problem is considered next. Define the functions
family gt(S) introduced in Section I. Our strategy is to
employ a Galerkin procedure which involves projections J N) (3.16)
onto finite dimensional subspaces. Let us define the finite o Z
dimensional spaces n=1

N) = span { (3.8) and

and the associated f-r fields F(N) := ' (3.17)

F(N) = span {f. =XKgn}n (3.9) n=1

Since we have not imposed the requirement that
where fn and g[ are given explicitly in (1.19)-<1.23). In J( _) = 1, let us inodu normalized coefficients
the finite dimensional space the optimal current is of the

form , Co.. (3.18)

and define

subject to the constraint V
N)O. Z q (3.19)2 Co.,, n=1:= g. (3.= Z C,,9)= 1

nI I L,(s) and

The eigenvalue equation N

RJ = AJ (3.11) F0  E o,. f,. (3.20)
n=1-

becomes It then follows, as proven explicitly in [15], that
N N

Cn Rgt = A(N) E Cil 9f (3.12) irn A(o') = Ao. (3.21)

and we seek the largest eigenvalue which we denote by Moreover there exists a subsequence of {. oN)N-X call it
A()N). Forming the inner product with g' leads to the { M) such that

generalized algebraic eigenvalue problem

NN UrnJ 0  J0 (3.22)
C" (R = ' ,,(s) = "(g-'g!)Vhs)

Sn =(3.13) where Jo is an optimal current disth-ibution, i.e.,

But Ao = P(Jo; a), (3.23)
(R ,9" gi n s and an optimal radiation pattern is given by

= -(dIcg on)L2,A) F 0 = Jim PU). (3.24)
= (aof , .f,-)L2,s). (3.14) M - - 0

This procedure has been carried out numerically for spher-
Here we see the value of the particular family 9t(S) ical and ellipsoidal antennas (17]. As an illustration we
because even though the operator R may not be explicitly present in Fig. 1 the optimal radiation patterns for three
known, the functions g•, and f, are explicitly known (see different surfaces, a sphere of radius a, ellipsoid with semi
(1.20) and (1.21)) hence the quantities (9g.,9.)L2(s) and axes .9a.a, 1.la and ellipsoid with semi axes .5a, a, 1.5a.
(•m' I"m) L2(s,) may be calculated explicitly. The problem Our examples are chosen to demonstrate the effectiveness
of antenna optimization is thereby reduced to determining of this optimization method in finding current distributions
the largest eigenvaluc A(N) and an associated N-component which give rise to radiation patterns with two separated
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(19 .) (8) 94 of H. -G. Burdinsky [18] who uses a gradient method toSapproximate 
the optimal solutions.

SIiiIIV. OPTIMIZATION OF SNR

As a second example, we consider the problem of op-
S: Y2, Y 2 z 2 02 timizing the SNR subject to a constraint on tie Q-factor

(see (2.3)). This example is an extension to the three-
dimensional case for Maxwell's equation of the two dimen-
sional problem considered in [12], [13]. Thus we consider
here the problem of maximizing the functional

S~a() = s, W(i)2 JF(iI)12 ds Js, Lj(f)2I 12•) ds
S : x 2  y 2 . : :.1)-I(.9: 710•2"° subject to a constraint

• • Yo` Q(J) = IIJII'• Il~IE'II2s <- C (4.2)

where, in (4.1), w represents the noise distribution which
is assumed to be nonzero on at least some portion of S,
while, in (4.2) C is a given constant.

xS ,yZ , 2 UZ For each fixed value of i, (4.1) defines a functional of
J which we denote by SNR(J). Hopefully this abuse of

notation will cause no confusion. The denominator of this
Fig. 1. Maximizing Power Radiated in a Sector-Magpitude of functional vanishes only if the function w(-)F(:i) = 0
optimal radiation patterns for ellipsoidal antennas with two main
lobes. almost everywhere however our azsumptions prevent this

from occurring.
The basic existence result of [13] states that if there is

main lobes. Thus the sector in which power is to be any nontrivial J 2 LV(S) satisfying the constraint (4.2)
maximized was characterized by the function then thcre exists an optimal solution, that is, if v0 =

10 I ! ,5 1 . sup{SNR(J) IJ # 0, Q(J) • C}, then vo is finite and
128 ,, 12 _there exists some admissible Jo such that SNR(Jo) = vo.a 10~ - 4 1 :5 128 <12 (3.25) The proof relies heavily on the fact that not only is K) a

0, all other (0,4,) compact mapping from square integrable functions on S to

The magnitude of the optimal radiation pattern is plotted square integrable functions on S1 but KC is also bounded
in Fig. 1 for two planar sections, one longitudinal bisecting as a map onto continuous functions on S. "Ihe details of
both main lobes and one latitudinal containing one main the proof for the electromagnetic case discussed here may
lobe. The same sections are used for all three surfaces and be inferred from the proof for the two-dimensional caset
the shape of the optimal radiation patterns is seen to be appearing in [13]. Note that it is always possible to ensure
remarkably similar, although it should be remarked that the existence of J satisfying the constraint (4.2) by taking
quantitative comparisons are not to be made since different C sufficiently large.
scales were used in different patterns. All calculations were Further analysis shows that, at each optimal solution, Jo,
carried out for ka = 10 and N = 198 (correspond- of this problem the constraint (4.2) is acrive by which is
ing to a maximum order of 9 for the spherical Hankel meant that
functions in (1.20)). We note that while these patterns Y, Q(Jo) = C (4.3)
display main beams which are considerably wider than
the sectors characterized by a, the quaJitative structure of (see [13] Theorem 2.2 for details). Clearly under these
tie patterns conforms well with the desired performance circumstances any solution of the optimization problem is
criterion embodied in the optimization problem. This ex- likewise a solution of the related problem of maximizing
ample illustrates the feasibility of actually solving one of the functional (4.1) subject to the equality constraint (4.3).
the optimization problems oC Section 1I and thus provides For numerical calculations we replace ,1t Hilbeil space
the antenna design•r with a usable mathematical tool for L2(S) .by the finite dimensional space ,4) (see (3.8)),
finding optimal current distributions on crnformal antennas which thdin replaces the original constrained optimization
of known configuration, problem with one in finite dimensions:

For a different approach to this problem of maximizing
radiated power, we refer the reader to the Diploma Thesis max SNR(J) (4.4)
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..- KJo()1)2 Kxw2•W Joaj T2+ 0o(I - CC*K)C) Jo = 0 (4.7)

(Jo, (I - CKP.K) JO) = 0 (4.8)

"where the tensor O(x,y) = Zo Vy x ft(x,y) x X, which6.-so po" 56.135 SNR .3&7t94 :..
are then projected into the finite dimensional space 9, V

Actually, computations were carried out in (J 2] for the
.. two dimensional casw for H1-polarization (J = iu(x, y) on

• " S where i is a unit tangent vector) for u of the special form
of a single layer distribution with density h/ The surfaca S
was taken to be a circle of radius a and the- noise distribution
w was taken to be the characteristic funct!on of an arc of
2000, that is for

6*30 p0 o80.635 SNR,2.4975 i= (COS 0, sin 6), -- r <9 < rr•"/'•''L, •w(9) = 1. 10 - 11 <5 100. •:
WW { , jo - 'r1 > 10o0, .

L Figure 2 shows the magnitudes of the optimal far field pat-
€ tern and the density of the single layer which produces this

far field for three choices of the direction i = (cos 6. sin 5)

in which SNR (i) is maximized. Also included are the
optimal values of SNR and the multiplier po. In these
examples ka = 6, C = 10, N = 15.
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Certain hydromechanical quantities associated with a floating or a totally
uimmersed body depend explicitly on the body's geometry. In this paper, the

authors consider the problem of choosing the shape of the body so that one such
ii quantity, added mass, is optimized. In particular, a constructive method of

penalization type is proposed which depends on the availability of a complete
family of solutions of the original boundary value problem and it is shown how
such families may be generated.

1. Iafoduction

WH•EN a body, floating or submerged in an infinite, ideal, inviscid, and irrotational
fluid is subjected to a periodic vertical displacement, a wave pattern is created in
the fluid. The problem of determining this pattern from a knowledge of the body
geometry and applied forces is well known in fluid mechar,,-s.

In problems with either partly or fully submerged objects, quantities of physical
interest are not only the wave patterns which may be derived from the velocity
potential but also functionals of the potential such as added mass and damping
factors which measure the distribution of energy in the fluid (see e.g. Wehausen
& Laitone, 1960: p. 567). "These factors are dependent on the body geometry and
the natural question arises as to whether such quantities may be optimized over
restricted classes of body geometry.

The question of optimizing the added mass or similar functionals by choosing
the shape of the object was addressed by Angell et al. (1986), who established the

existence of an optimal shape for a totally submerged body for a fluid of finite
depth in an appropriate function-space setting. This problem is again considered
in :ire present paper, this time presenting a constructive method for actually
findin8 shapes which optimize added mass or damping. In the terminology of
optimal control, the problem is one of optimization of geometrical elements (see
e.g. Lions, 1972). Other optimization problems of thi-s genral class have b..ee,
studied previously by, for example, Cea and co-workers (1974, 1975), Chenais
(1975), and Pironneau (1973, 1974). However, in contrast to much of this earlier
work, the natural setting for our problem is in an unbounded rather than in a
bounded domain.

It will come as no surprise to those familiar with the peculiar difficulties
associated with exterior boundary value problems that it is particularly useful to
reformulate the original problem, which here includes not only boundary
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conditions given on the bounded surface of the body but also those on the free
surface and on the bottom (both of which are of infinite extent), as a uniquely
solvable integral equation defined on the boundary of the body. The efficacy of
the boundary integral equation approach depends, at least in the first instance, on
the uniqueness of solutions to the original boundary value problem. This
uniqueness question should not be confused with the question of unique
solvability of some boundary integral equations derived, say, from a layer ansatz.
This latter question is sometimes referred to as the problem of irregular
frequencies.

The unique solvability OL die boundary value problem for the floating body is
not completely understood, although, as John remarked in his fundamental paper
(John, 1950: p. 49), 'There appears to be no physical reason why... the primary
wave motion together with the motion of the obstacie should not determine the
motion in the liquid uniquely'. In that paper, John established uniqueness only
with certain restrictions on the body shape, in particular that it be convex and
smooth, that it have normal intersection with the free surface, and moreover that
vertical rays from the free surface intersect the body at most once. These
conditions may be relaxed somewhat (Kleinman, 1982; Simon & Ursell, 1984) but
some nonphysical restrictions remain.

When the body is completely submerged, John's uniqueness proof no longer
applies. However, Maz'ja (1978) has provided a pioof for a class of bodies
delimited once again by certain geometric restrictions. The recent and interesting
paper of FHulme (1984) discusses the result of Maz'ja and effectively describes the
geometric meaning of the result. We will give a precise statement of this result in
the next section. At this point, suffice it to say that Maz'ja's condition provides a
reasonable class of bodies for which we can assert Lhe uniqueness of solutions of
the boundary value problem in the case when the body is totally submerged.

In the case of the totally submerged body, AngeUl et a. (1986) derived, by using
a Green's function, an integral equation which is uniquely solvable for all
frequencies. This Green's function, introduced by John, is that appropriate to the
entire fluid domain with no body present and satisfying the boundary conditions
at the bottom of the fluid (assumed fiat) and the linearized free-surface condition
on the entire fli.id/air boundary. It is the formulation of the boundary value
problem, the statement of Maz'ja's theorem, and the derivation of this boundai-y
integral equation that are summarized in the next section, while Section 3
contains a description of the optinization problem and a statement of the results
obtained in Angell er aL (1986) concerning the existcnce of an optimal body
shape.

It is the final section, Section 4, which contains our main results. There we turn
to the question of a constructive method for finding approximate optimal
surfaces. We prove that certain familics of functions form complete families of
solutions and propose a penalization-type method fo" the constructive solution.
"The idea of using complete families to find approximate solutions to elliptic
equations goes back at least to the work of Picone and of Fichera (see Miranda,
1970, for references). Angell & Kicinman (1984. 1985) have used such families in
treating some optimization problems which arise in acoustic and in electromag-
netic radiation problems. An approximation method similar to that proposed here

[ .. ._ 
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is discussed in the context of an invwrse transmission problem by Angell el at.
(1987). A related method in the inverse acoustic problem has been reported by
Kirsch & Kress (1986".

2. The exterior boundary value problem

We are conceined Kith solutions of Laplace's equation in a domain D a R-,
unbounded in the x and z directions and exverior to a bounded boundary F,
which is assumed to be a Lyapunov surface of index 1. A Cartesian coordinate
system is fixed with the origin on the free surface and in terms of which the
domain D÷ = (R2 x [-h , 0])\( "U D"), where D- denotes the interior of the
submerged body, as indicated in Fig. 1.

The submerged body will be assumed to be simply connected and lie in a strip
Sx [-h + c0 , -c 0], with co > 0. The condition that the surface be L.yapunov of
index 1 guarantees, among other things, that there exists a Lipschitz continuous
normal fi at all points of r. We emphasize that A1 is oriented so that it points into
D÷. Points will be denoted by p = (x,, y,,, z.) and, in cylindrical coordinates, by
p = (p;,, Op, yp). And the subscripts will be omitted if there is no danger of
confusion.

With these conventions in mind, we consider the boundary value problem
i•A q•- in D-, (2.1a)

T+k=• 0 on y = 0, (2.1b)

0= on y = -h, (2.c)
30

T G on r, (2. ld)

together with a radiation condition

4_- iko, = 0(p-i). (2. le)
ap

I n

0Y -h

Fia. 1.

r
______
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In this formulation, G e C(I') and k. : co2 g is a real parameter, where 0) is the
frequency of an oscillation ('issumed tiuie pariodic) and g is the gravitational
constant, while ko is the root with the largest real part of the transcendental
equation

k,, sinh k~h =k cosh k.,h. (2.2)

Maz'ja (1978) introduced a restricted class of bouadarics for which this
boundary value problem has at most one solution. We formulate that theorem as
follows.

TiiEoan2m 2.1 Let V be the vec-tor field in R' defined by

=p(y 2 -p 2 )A_ 2 p 2y

p 2 +Y 2  p 2 +Y 2 *

Then the hortwgeneoiss boundary value problem (2. 1) with G = 0 has only the
trivial solution provided tha

V*Ai-'0 onF. (2.3)

A discussion of this result and its geometric significance may be found in Hulme
(1984). We will refer to the class of all such surfaces as the Maz'ja class.

Following John (1950), we introduce the Green's function for this problem,
which is normalized to have the form

y~~) ~ 1 (2.4)

where the function R has bounded derivatives with respect to q for points p e r
(see John, 1950: p. 96) and y satisfies conditions (2.1b, c, e). Using this Green's
function to define single and double layer potentials, the usual jump conditions
can be e.,tablished as in the potential-theoretic case since the singular behaviour of
7 and ayl/anq is determined by the first term in (2.4). For convenience, we record
these results here:

lim a ju(q) y(p, q) dl-, ±u(p) + U(P a~p q dl-,, (2.5)
p~r* Onr J anp

lrn u(q) a y~,q r :~)+ UP yp )dr, (2.6)
P ~r* fr nf anq n

where p - I' means p approaches F from D +or from D-, u e L2(1-, and the
relations (2.5) and (2.6) hold in. the L' sense (Mk4daida, 19770).

Moreover, if 4) is a solution of the boundary value problem (2. 1), then one may
use Green's theorem to establish the familiar relation

a a 20)(p) (p c- D-)
f pq) .q-P ~(q) - (P (q) an y(p, q)) dI, 0)(p) (p efn, (2.7)

an L.0 (p eD.
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If one then uses the boundary condition (2.1d), we have, for p E .,

fry(p, q)G(q) dr. - 0(q) - (p' q) dr - 0(p), (2.8)

or, in operator notation,

(I + K') = fr y(p, q)G(q) dr1, (2.9)

where TV is the bound'-- integral operator with kernel ay/anq. We pause to
remark that, given a solution u of this integral equation, we may represent the
solution of the boundary value problem according to the relation (2.7) by

cp(p)=ry(p, q)G(q) dq - • fu(q) a'. y(p, q) dIq (p eD*), (2.10)

and, again using the jump relations, one sees easily that

rU, (2.11)

which is a direct relationship between the solution of the boundary integral
equation and the boundary values taken on by the solution. As we will see below
when we consider the optimization problem, it is particularly convenient to have
this formulation since the cost functional involves just the trace of the solution of
40 of (2.1) on 1". Such a direct relation does not obtain when one uses a layer
approach in which one assumes that the solution 0 has a representation as a
single layer,

0(p) - fr u(q)y(p, q) drT,

and then uses the boundary condition and jump relations to obtain an integral
equation for u.

With the aid of these jump conditions, we have proved the unique solvability of
the boundary integral equation (2.9). Specifically, we may state the following
theorem, referring to Angell et al. (1986) for the proof.

THiOR-mo 2.2 Let F be Lyapunov of index 1 and belong to the Maz'ja class. Let
G e C(/"). Then the integral equation (2.9) has a unique soluton in L2(F).

Remark. In fact, using a standard argument, the solution whose existence is
guaranteed by this last theorem can be shown to be continuous since G e C(").

3. The optimization problem

-Let 1={p eR 3 :IpI= } d.;note the surface of the unit ball in R3 and let
C-'(I:,) denote the space of continuously differentiable functions whose first
derivatives satisfy a Lipschitz condition and which is equipped with the usual
Hblder norm 11-11.1 (see e.g. Colton & Kress, 1983). We will assume that we are
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given a family of surfaces which can be described by C"1 pararnetlizations,

IVj) {pe R:p = f (ft)Y+ P0,f p -po} (3.1)

where f:F0--* R3 is an element of C"'1 (ro) and po e R 2x (-h + Co, -o). Let a
and b be two positive constants and define the subset 97.t c: C'.'(10) by

9..b - ("e c,.1(ro):

11f 111., b,.f()p +poeR' X (-h + co, -co), f (P) ;a (p 4E o)). (3.2)

DEzlNrnoN 3.1 A swface S in R- will be called admissible provided S can be
described by a parametrization ' c P.b and S is contained in the Maz'ja class (cf.
Theorem 1.1).

Note that, since each admissible surface is completely determined by the
function f, we will henceforth simply refer to 'the surface f', although, when
convenient, we will use the notation F(f). Clearly, each admissibic surface
describes a surface bounding a bounded region which contains a ball of radius ja
and centre pg in its interior (see Fig. 2). We will, when necessary, denote the
region in the domain R2 x (-h , 0) exterior to an admissible surface f by D" and
the interior of the surface by D7.

Now we limit attention to a compact subset U.,, of the class of admissible
surfaces. Since the embedding C0(r0)- C'-(lu) is compact, we may choose Uad to
be a closed subset of functions in CZ(ro). This particular choice leads to a
nonlinear optimization problem over a closed convex set. The convexity will be
advantageous for subsequent numerical considerations. We note, however, that
the subsequent results could be achieved using any compact subset of the class of
"admissible functions.

We now wish to consider a family of boundary value problems of the type

F.

----------
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discussed in Section 2 which may be considered as indexed by Ud:

Aq5(p) - 0 (p e D;), (3.3a)

84) 0ony-0, (3.3b)

8.0. 0 on y - -h, (3.3c)

-n G on r(f), (3.3d)

- ikoo4 - o(p-). (3.3e)
ap

Note that, because we are considering a family of boundary value problems, the
data G in (3.3d) must be defined throughout the domain formed by the union of
all admissible surfaces. This is indeed the case for heaving motion, where
G - -A.

With this understanding, each choice of surface f e Ud gives rise, according to
Theorem 2.1, to a potential 0 4)(p;f), with p e D'. Denote the trace of
0(p;f) onf by

4WP):= 0(f(0)V+P0;f) (pe To. (3.4)1

The class of optimization problems that we discuss below involves a functional
defined as follows. Let L:C(ro)-+R be continuous and note that, since
ýfGj) e C(Jo), this functional may also be considered as a mapping from U.d into
R by restricting the domain of L to {fe e C(.o):f e Ud4}. In this sense, we define

LVf] :- L(ý,): Ud-' R. (3.5)

We seek a function fo e U4 such that

L[f0] 1r L[f] for all f e V, (3.6)
or

Lifo] ;w L[f] for all f e Ud. (3.7)

We will confine our discussion to the problem of minimization. This is sufficiently
general since the problem of maximi, ing a function-- L may always be replaced
by that of minimizing -L.

Specific forms of the functional L of (3.5) may be chosen to reflect desirable
design criteria. For example, as mentioned in the introduction, one may choose L
to represent the added mass of the hull. In this case, the problem of interest is
that of minimizing the functional/. in order to reduce the hydrodynamic force on
the ship hull, a goal of obvious importance to ship design. Indeed, it is well
known (see Wehausen & Laitone, 1960: pp. 563-7) that the added mass of a

FJ
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particular hull may be represented by
U. =Rero, O(p) •n7 q(pp) dl-,

where Re stands for the real part of the integral. This form, in light of the

boundary condition (3.3d), leads to the functional

L[.I - Re f. ,(p;f)G(f(.P)p +pO)4(P) dFO, (3.8)

where If is the Jacobian of the transformation p -f(ý)/P + po, and dr0  d9 dOdo,
with 0 and 0 the spherical polar angles of the point p. We remark thav, if we can
show that the map f--• (. ;f) is continuous as a mapping from U8 to C(ro), then,
regardless of the particular form of the functional L, its continuity together with
the assumed compactness of Ud will guarantee the existence of an optimal
solution.

More generally, we may consider the functional
.7

L = ujulmy, (3.9)

where

my:=p ,Oj 1 dr (i,j= 1.... 7) (3.10)

are the components of the added mass tensor, the u, (i = 1 ..-, 7) represent the
velocity components (assumed given) of the body, p is the density of the fluid,
and each 41 represents a velocity potential of a rigid-body motion with unit
amplitude in the absence of incid.nt waves (see Newman, 1977: pp. 287-8). We
remark that, while this functional is quadratic in the ul, it is not quadratic when
considered as a functional of the surface F. Introduction of this functional permits
optimization with respect to combinations of the added masses, perhaps omitting
some, but does not change the analysis below, since it is trivial to rewrite the
functional (3.9) in the form

L=pf4- a Odr 3-1
an (3.1)

for J-- _ u41_ , the harmonic function 0 satisfying all required boundary
conditions.

Angel et al. (1986) proved the continuity of the mapping f--. q(-;f) from U.4
to C(F0). By introducing the functionsTI f) '= €(f(f) N+po), (3.12)

G(ft-) := G(f.(P) + po), (3.13)

and kernels
=a

af (F, 4):- y(f (A) + po, f (4)i, + po)lf (4), (3.14)

by(p, q) := -r(f (P) fl + Po, f( )q +Po)4:(4), (3.15)
anq

U iI
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the integral equation (2.9) may be rewritten as

40 + f a(p, 4)(q d Q = bf b(pi, 4)Gf (t ) dr (3.16)

The integral operators Af and B1 defined by the kernels a, and bf are compact
operators on C(F0), a fact established in Angell et al. (1986).

The basic results are the following theorem and its corollary which we will use
in the next section.

THmoRlM 3.1 Let B(C(ro)) denote the space of bounded linear operators on
C(F0) equipped with the uniform operator topology and assume tha the map
f--Gf from C11(ro) into C(r0) is H6lder continuous. Then the mappings f-+Afand f--* B of C1'(1o) into B(C(Fo)) are H6lder continuous. Moreover, since the
set Ud is compact, the map f--4O(-;f) of U'd into C(F0), where t((.;f) is the
unique solution of the boundary integral equation (3.16), is H6lder continuous.

The continuity of the mappings f--. (-;f) and f--+ Gf lead immediately to the
result that the optimization problem defined by (3.6) has a solution. For the
particular case of the added mass functional (3.8), which is the functional we will
concentrate on in Section 4, we may state the following corollary to Theorem 3.1.

COROLIARY 3.1 Under the hypotheses of Theorem 3.1, the functional L[-]
aefined by the equation (3.8) is continuous as a map from Ud into R and
consequently takes on its absolute minimum on the set Ud.

4. A peaaiizaioo methiod

With the groundwork in place, we turn to the main results, the development of
a constructive procedure, a penalization method, for finding approximate
solutions of the optimization problem described in Section 3. For the sake of
definiteness, we will formulate the procedure in terms of the specific functional
(3.8). It will become clef r that the method is applicable to a wide class of
functionals of which (3.8) is but one example. Such methods have been applied
by others to systems governed by partial differential equations (see e.g. Lions
1971, 1972). Generally, they involve the introduction of additional terms to the
cost functional involving both the partial differential operator and the various
initial and boundary conditions. Here, we propose to carry out the minimization,
not over an entire Sobolev space as in earlier application~s, but over a compact set
of functions whose traces on the class of admissible surfaces serve as boundary
data for exterior solutions of the boundary value problem. With this approach,
we will need to introduce only one penalization term correspoaiding to (3.3d).

We will then turn to the development of a Galerkin-type procedure based on
the use of complete families of solutions. .ilerrients of such a family are harmonic
functions, defined in the region (R' x [-h , O])\B.,, where B,4 is a ball of radius
ao < Ja, satisfying not only the boundary conditions (3.3b) and (3.3c) on the free
surface and bottom respectively but also the radiation condition (3.3e). The use
of complete families not only simplifies the form of the cost functional but also

z7j
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offers the significant advantage of allowing as to avoid the difficulty. common in
numerical procedures for inverse problems, of having to solve a succession of
direct problems as an essential step in an iterative procedure. The method given
here, once the dimension of the approximating subspace is fixed, produces both a
suboptimal surface and the appropriate field exterior to that surface.

We will proceed in three steps. First, we will set up the penalized problem in
the infinite-dimensional setting. Second, we will stu.Iy the finite-dimensional
problems generated by considering subspaces spanned by finite collections of a
complete family of solutions, and proving convergence of minimizers of the
finite-dimensional problems to a solution of the original problem. Finally, we will
show how such a complete family may be obtained so that the procedure may be
implemented.

Let A denote the closed annular domain Bb,\B, lying in the strip R2 x (-h , 0)
which is determined by the spheres Bb and B., where a and b are the constants
appearing in the definition of the class SJ.,. Thus all the admissible surfaces 1r lie
in A. We will assume, in concert with the remarks following equations (3.3), that
there exists a function H e C2(A,) (i.e, C2 in an rl-neighbourhood of A) such that
aHI an = G on F for each f e U,.

Let M be any constant satisfying IIHIc•,C(A) A AM and dehiie

SM = {F E C2(A): IIFIC.•4A,) - MI}, (4.1)

where II'llc,(A•) is the usual C2-norm. Since the embedding C2(A)--.C'S(A) is
compact, Sm is relatively compact in C'(A). If we deiuote its C'-closure by S, then
.9 is compact in CV(A).

For every F e S and f e U~d, we can consider the boundary value problem with
boundary data

n on ir. (4.2)

By Theorem 2.2, the corresponding integral equation (2.9) with G replaced by
aFlan has a unique solution ufF, which can be used zo generate a unique
solution pf.F to the boundary value problem by using (2.10). This is true, in
particular, for F = H.

We now introduce three functionals 11, 12, and L, defined on the compact get
Ud x S by

(f' F) :=Re 0fF(P)- +F(p) dF (4.3)

and

SF):= (4.4)

while, for a given v > 0,

L,(f, F) I (f, F) + v12 (f, F). (4.5)

.1
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With the usual reparametrization, this expression can be rewritten in terms of
integrals over Fo:

L. (f, F) -Ref 0,,p a )J 4 r+~ 21+I
p -p-+0(4(.#

+ vfrI ~-iF(p) - G (p) I-O-MJf(4) dro. (4.6)

The functional 12 is intended to ensure that F is chosen to approximate the given
data, while 11 ensures that the added niass is minimized. Indeed 12 can be viewed
as a penalty term which penalizcs deviations from the d-&,-ed boundary condition
on the surface f. Using arguments completely analogous to those used to .prove
, Theozem 3.1, it can be shown that both 11 and 12 are continuous on Ud x ,S, and
hence there exists a pair (f, F,) e U. x S such that

L,(,,F• ';LUF)for all UF)e•t/d•x 3.

We note that, if we consider an increasing sequence of penalization parameters
{v,,} such that v,-m'o as m-.o, the conresponding sequence of optimal
solutions will contain at least a subsequence {(fk, Fk)} which will converge to an
element (f., FO) e U/d X S. A standard argument (see e.g. Luenberger, 1969:
p. 305) shows that, in fact, (.o, Fo) is a nminimizer for the original optimization
pioblem (3.6), so that aFo/an - G.

As it stands, the functional (4.6) suffers from the drawback that there is no way
to associate the added mass with a particular surface without first solving the
direct problem for 'PI.F. We now propose a Galeckin-type approximation method
which eliminates the need for first solving the direct problem. In fact, if the
dimension of the approximating subspace is fixed, then the approximate solution
of the minimization problem is obtained by simultaneously solving for F and the
optimal surface without requiring the solution of a succession of direct problems.

The approximating subspaces will be defined in terms of a countable family X
of harmonic functions defined as follows. The elements v, of Ye! are harmonic in
(R' x [-h , 0])\B., and satisfy conditions (3.3b), (3.3c), and (3.3e), and the
normal derivatives {tvd/nlIrcT))'-i are linearly independent and are complete in
L 2 (F(f)) for all f c U.d. We will show one way to construct such a family at the
end of this sectiou. Postponing that analysis, we begin the description of the
approximation procedure by establishing a convergence result which we will use
in the proof of our main result. We remark that the completeness of the family X
allows us to approximate any function in L(2(f)) as closely as desired with a
finite linear combination of the normal derivatives Bv,/an. Even more is true as a
consequence of this choice of the functions v, as harmonic functions. This
additional approximation result is described in the next statement in which r is a
fixed surface.

L.EmmA 4.1 Let G e L2(r) and let 0 be a solution of the system (3.3) with
39 / an - G. Let { vti} I' I be the complete family of harmonic functions ar described
above. Suppose that, for each integer N ; 1, the coefficients (cjN):l 1, 2,..., N}

t..
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are chosen so as to minimize II'.., cýN)(aOv1/ n) - GIIL2fn. Then

lim c',.I K) 0, (4.7)

where 4, is the solution of the integral equation (2.9).

Proof. Since 4, and v, (I - 1, 2, ... ) arc harmonic and satisfy the radiation
condition, Green's theorem yields the relations

1(l + fr,)Jt '(p, a)- (q/) d,(4.8)
(1 + g•)u, - r,,

U rfrp, q)G(q) dF, (4.9)

Rr* being the double layer operator associated with the surface 1 (see (2.7)-
(2.9)). We may conclude immediately that, since the integral equation (2.9) has a
unique solution,

"N r .N O,
Scff)V, -4,- (1+ k'r)-)Jr(p, q)(E c (q) -- G(q)) dr-. (4.10)

1-1 r .

Moreover,

N1( K + Nr)l' )IS G , (4.11)

where S1. is the single layer operator associated with V. The result. follows from
the boundedness of the two operators and the completeness of the au,/an.

The elements of the family X individually satisfy the free-surface condition, the
radiation condition, and the boundary condition on the sea iioor, whilc their
normal derivatives are complete and linearly independent on L2(r(f)) for all
f e U.,j. This makes them useful, not only in approximating solutions of the
submerged body problem (3.3), but also in formulating a sequence of approxi-
mate optimization problems.

To this end, it is convenient to introduce the subspacc VN c: Ye spanned by
the functions u1 e ge (1 < I 1C N). We then consider the set S1 - VN nl SM, where
Sw is defined in (4.1). In terms of this set, we may define an approximate inverse
problem as follows. For a given integer N and function G, find w e St and fG Ud

which together minimize

L(.,N)[f, w]j: Re of ,f.(P) a tw(p) i J(4) dr0

+v V +Tw(p) -G(p) ~ J (ij) dF0.

The question immediately arises as to how the solution of the approximate
optimization problem is related to an optimal solution of the exact problem. As
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the following result shows, the cluster points of optimal solutions of the
approximate problems are solutions of the exact optimization problem.

THwOREM 4.1 Let

Lrn:= min (LF[], F] : (f, F) c U, . < }),
L (VN : ra-min {L()V[f, 0 : (f, P) e Ud x SN).

Then, for f'xed v, lira... L V° - L' Furthermore, if f N) is an optmal surface for
L(') with corresponding optimal O(N), then every cluster point of the sequence
{.f( , VOV) in C1.(ro) x C'(A) is optima for Lý.

Proof. Suppose that eJ,, &) € Ud x 9 is optimal for L,, so that L' - L , ,,
and let (f,, 0) be a cluster point of the sequence ((fN, V f ?v. I in
CI'(1o) x C'(A). Thus there is a subsequence {(.[ANA), <,N(v))}k.j which converges
to (fo, 0•). By continuity, we have

irn L.(f N'), OWN,)) - Lv(fo,, 0°) ;0 -L ,

,ish to show that, indeed, Lý(f't, 0,) - LO,
Note first that since (f("1), 0 'Nh)) is optimal for L("), we have the estimatc

L(Nk)C(Nk) (f VN&)), O L(N)(, ri) for all V e S"&.

Hence

LaNh)l'L_ Nk, i"

"C Rc O-0..)ý"Tydr(L) + v- ,G
'• ?-) an L(J.d all

k + f9•',dr(I) +v(Dl• +l, io,,_ "i

+9 Re " J. -' " 4"'- drf + ["•.-"- ,re.) a ,,r(jv))

an

1 nOn Lar.)) +k

+ J+ .(f-•, dr )+ ( o,- ,

for suitable constants C and M.

_. ~ ~ ~ ~ a iaR - "m' in mum= , LnIn n L
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Choosing ',' q,(N')eSN4 so that aa•,(Nk)/an best approximates aN•0/&n, it
foUows that

~- an an L2(rQy,))

while, from Lemma 4.1, we also have

Uim f oj- 4rj dm = 0.

It follows that

L •.N*)(fNi), ,N--4 Re 01 ,5, dl( dr +Yv a gn +0(1)

. LO•, •,)+ o(1),

where o(1)--*0 as k-'*-. Since LN N•&N)k) , OCNA)) = L.(fcNk), "(N&),, continuity

implies 
that

which completes the proof.
Finally, we address the question of the construction of a complete family of

solutions. Recall that the class of admissible surfaces is defined in such a way that
all contain a bail of radius ja, centred at the point po, for some preassigned
constant a > 0. Certainly we may consider a surface F, strictly interior to the
surface of the ball U,. We may then prove the following result.

"TH'oR.MO 4.2 Let ('pa,,•. be a linearly independent family of functions that is
ComDiete in L2(Fr.). For each n, define the function u. by

U.(p) r. 7(P q),.(q) d1, for p c-R\D,,.

Then the functions
v.(p)-.(au./an)(p) forp elr(f), n =1, 2, '-" (4.12)

form a complete !in...,ary f-& n ....-- y U 2 j k. r a.....

Remark. By linear independence of these countable families we mean that any
finite subset is linearly independent.

Proof. Consider the family {v,,) a L2(F(f)) aud suppose that there is some
Se L 2(r(f)) such that

0= (W, v.)Vm(ro) for all n= 1, 2,-.-.
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"Then, recognizing that F(f) n( I. o,

0= W, JV.L'(rW)f (P)(<-f :(p, q)4F,(q)df) dr1

Vrp) (?(p, q) (q)•,(() drT

where WrPU) is the double layer operator defined implicitly above with the
property that Wry) : L2 (r(f))--* La(P' ) and that the set {4q,,} is the complete set
L2(r.)., Thereforc "'r(f) W - 0, and henct WrUf) t - 0, on r..

Now consider the function uw, defined in D.7 by

Jr (p. q) P(p) dn..

Then u, is harmonic in D7. Moreover, in the region D-, i.e. in the region
interior to r.,, u w is harmon•i and u, wlr.. -0 . Thus uv, vanishes everywhere in D);
and hence, by analytic continuation, everywhere in Di. But, since uw,- Wrf)f "
we have, using the jump conditions,

0- lira Wr~rm)(q)m(I+k +r*.V)q1.

The results of Section 2 guarantee that the only solution of

(I + -,rm)u 0 o
is the trivial solution, so we conclude that W - 0. This establishes completeness.

To establish that any finite subset of the v,, is linearly independent, suppose,
without loss of generality, that there exist constants a. ¢,, such that

/ o'y , 0 on r(f).
J-1

Then, by definition,

0- = -,,-, d : r(p, q)4,(q) dr1

"•yr, q) C

a fr-- y(p, q)w(q) df for p e(f ,

where, w(q) :- Z, ,(
Now, for p e D', i.e. in the exterior 1.., define the function v v u(p) by

U(p) := f y(p, q)w(q) d1] - S.8 w.

r.-j
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Thus certainly v is harmonic in D' and, in particular, is harmonic in D".
Moreover v satisfies the radiation condition (3.3e) and the boundary condition

V •0,

and so v is a solution of the exterior homogeneous Neumann problem. By the
uniqueness theorem, u vanishes identically in D7" and so, by analytic continua-
tion, also vanishes in the region exterior to r,. Pance, again using the jump
conditions,

0- lir Sw=(I+ K.Jw=0,

where

(K.o w)(p) := f (p, q)w(q) d1".

But (I + KJk)u =0 is uniquely solvable, so (I +-, Rju - 0 is also uniquely suAvable
by the Fredholm alternative. Thus, given (I + K.,)w - 0, it foflows that
(I + R.,)P- 0, and so r, vanishes on r,.. Therefore, so does w. From the

liner independence of the (4}-, we conclude that all the coetfcients a,=0
(i= ... N), and this shows that the corresponding functions v, (i = ...., N)
arc likewise linearly independent.
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THE CONDUCTI1VE BOUNDARY CONDITION FOR MiAXWELL'S'
EQUATIONS-

T. S. ANGELLI AND A. KIRSCHI

Abetract First, the conductive bouidary value problemn is derived for the quasi-stationary
Maxwell equations that arioe in the study of -Agn ttelluric. Then the boundary integrai equation
method is used to prove the exastent,. :.- --- iiuenesa of solut~ions of t:2e problemn. The "ia section is
devoted to a study of the set of far field patterns foL. scattering problem-, with plane wave incidence.

Key words. Maxwell equations, boundary integ'ri equations, scattering theory

AIMS(MOS) subject classifications. 35P25, 45B05, 7BA45, 86A20

1. Introduction. Geophysicists, in their study of electromagnetic induction in
the earth (caflea aiagnetotellurics) commonly use a boundary condition for the elec-
tromagnetic field, which is often referred to as the conductive boundary condition. We
refer to Schmucker [16) or Vasseur and Weidelt [19] for the physical explanation of
this boundary cond~iiion. This boundary condition models the occurrence of a thin
layer of very high conductivity ior, while it is well kniown that the electric field does
not penetrate into an ideal conduv-tor of positive thickness, such a field certainly will
penetrate intv the medium beyond that ;.onductor if the latter is infinitely thin.

The analogous boundary condition in both the electromagnetic and acoustic prob-
lems have been knowna for some time; see, e.g., Harrington and Mautz [6] or Senior
[17]. In this context, the conditions have beei± considered as approximations to the
full transmission conditions. The wellposeciness of the boundary value problem in the
scalar case has, only recently been treated by Hettlich [7] alad Angell, Kleinman, and
Hettlich [1]. lu this paper, we employ the technique of boundary integral equations
to discuss the existence of solutions to the electromagnetic conductive problem.

The use of integral equations in problems of acoustics and electronaagnetics is a
well-known technique; a current account of the method may be found in Colton and
Kress [4]. For the pr, -'em. of scattering of time haniaoaic electrornatnetic waves by a
perfectly conducting object, the method was applieci at least as early as 1949 by Maue
[13). MUi fer [14] used the method in 1951 to treat the electromagnetic transmission
problem. As The classical transmission conditions are aspecial case of the boundary
conditions of the problem discussed here, and our surfares may be less regular than
those of [14], the present work may be conz~idered as a generalization of Mulller s
results.

Without attempting to give an exhaustive ieview of the literature on integral
equations in electromagnetics, we mention that various aspects have also been treated
by Weyl [22), Saunders [15], Calderbn [21, Werner [20), [21], Knauff and Kress [9], and
Gray and Kleinmaan [5]. More recently, Marx [11], [121 has developed- a sin-gle equation
for electromagnetic and time-dependent. scattering problems.

In §2 we derive the conductive boundary condition from the quasi-stationary
Maxwell equations for induction problems Lu a layered half-space. This is the situation
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of magnetotellurics. In §3 we consider the model problem where the anomalous region
of conductivity is embedded in a homogeneous "full space." Vie will prove uniqueness
and existenca results for classical solutions.

We devote §4 to the description of the far field patterns for scattering problems
whose incident fields are given by plane wave solutions of the Maxwell equations. We
prove the reciprocity principle and use this result to show that the clams of all far field
patterns corresponding to the incident plane waves of any direction and amplitude is
dense in L(S 2 ), the space o" all L2-tangential fields on the unit sphere Ss, provided
that the pair (k1 , k2) of wavenumbers is not an eigenvalue of a related eigenvalue
problem.

2. Physical derivation of a conductive boundary condition in magne-
tozellurics. We model the earth as a layered half-space filling the region X3 _: 0.
The conductivity a, (normal conductivity) of the earth is assumed to depend only on
depth X3 and to be piecewise constant.

A bounded region ! (anomalous region) is imbedded in the half-space X3 > 0. The
conductivity a. in f2 is different froin a,, and is allowed to depend on x = (XZ,Z2,"3).

Furthermore, we assume that 0 is covered by a thin layer with very high conductivity
al = al'(x), such that the integrated conductihity

r(X) := I f '(x + tn(x)) dt, x E M,

remains finite, i.e., al(x + tn(x)) = i(x)6(t). Here we denote by n(x) the outer unit
normal vector at x G Xf2.

We now assume that some kind of sources in the half-space X3 < 0 (e.g., in the
ionosphere) induces an electromagnetic field E, B in the earth X3 > 0. Here E = E(x),
and B = B(x) denote the spacial parts of the electric field E(x)e-" and magnetic
field B(x)e-it, where w > 0 denotes the frequency. Then h- and B satisfy Maxwell
equations in X.3 > 0. We formulate them in their quasi-stationary approximation
although this is not necessary for the mathematical theory, as follows:

(2.1) curlB = poaE, curlE = iwB,

where a is the conductivity (a = a, for x 0 n, a = a. for x E n2) and P0 the
magnetic permeability in vacuum. Using SI units throighout, we measure B in V/m,
B in Tesla = Vs/m 2, ao in A/Vm, w in 11s, and AO = 4irlO-TVs/Am.

To derive the boundary conditions, let the layer with conductivity af be of finite
thickness e > 0. Let C be a C2-arc on &f2 with unit tangential vector £(x), x E C,
and

= {x +te(x) : X cJtl <t}

the surface perpendicular to O0t with boundary OS.
For x E C, let v(x) = n(x) x i(x), where a x b and a- b are mean vector products

and scalar products, respectively. Then the Stokes theozem yields

(2.2) faEdse'= v -curlEds= iw v-Bad

and

I
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(2.3) B. d=LL. rculBd#• p =o Jo V.Eda

g problems ='0 C ,(x + tr(x))v(x) -E(x +tn(x))(1+ 0(c)) dtd(x).
atio•s. We'J .-
all far field For e --. 0, we conclude from (2.2) that fc(E+ - E-). d- =0. Here Et denotes the
mplitude is limit of E from the outside (+) and the inside (-), respectively. By the mean value
-, provided theorem for integrals and with e -- 0 in (2.3), we arrive at
eigenvalue .• !c~(B+- B-). de2~ rv-!,•.Edt.

! omagne-

'n Z3 > 0. This holds for every arc C; thus
nd only on

(2.4) nxEt+-nxEI- = 0 oUnfM,

3 > 0. The x nxBl.--nxBl_ = jM(rx E) xn oni51

Zl, z2, 3). It is the aim of this paper to study (2.1), (2.4), together with a radiation condition
-nductivity for the "anomalous" parts of E and B for the special case of a homogeneous region

in a homogeneous full-space (i.e., a, and a, are constant).
Thus let us assume that o- and cr are constant. First, we symmetrize (2.1)

and define k]• = iwpoai, j = iwpo. such that Lmky > 0, j - 1,2, and H
(w/lki)B in 11, H - (w/k 2)B in R 3 \ S1. Then we see that (2.1) tak-es the fobm

outer unit (2.5) curlH = -ikE, curiE = ikli in R3 \ 0fQ,

! .g., in the
E = E(x), k(x) k1 , in n,
i magnetick k2 , In R3 \.

roimation The boundary conditions (2.4) change into

nxEl+-nxElff=0 onffl,
n x n x (k2HI+ - kHl-)] = orwn x E on On.

3. Uniqueness and existence of solutions for a model problem. We now
Ed io the focus on the main problem of this paper. Given an open and bounded region 12 C R3

E in V/n, with C2-boundary 8&I, numbers k1,k 2,P, Ap2 E C \ {0} with Ink > 0 (j = 1,2), a

be of finite complex-valued function 0 E C0 03 (2), a direction d C S2, and an amplitude p E C3

x), x E C, with a .p = 0, find vector fields E, H E Ci'a(R0 a \ On) n C', which satisfy

(3.1) curlE-ikH=0, curlH+ikE=0 inW\ &82;

(.2)) nxEi+-nxEl_=O onefS;

2X × (n x H)I+ -,ln x (n x H)I.. = On x E on o;

,r products (3.3) E(x) = E'(x) + E'(x), H(x) - -curl E' (x) + H' (x), x ,
ik2

with incident field Ei(x) = pek2d'x, and where the scattered fields E, and H, satisfy
the radiation condition

(3.4) 1- x H'(x) + E (x)-----o , 00-- , uniformlyinxES2IiI1X
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with k= k-1 in 0 and kz k2 W R 3 \?. Likewise, we will 3et~ jLM in 11 and A 12
in R3 \ Q.

Here we have used the follnuing notational conventions:
(i) CO'a(0n) denotes the space of H61der continuous functions on &2 of order

a C (0, 1) (the space CI" (&I) is defned analogoualy);
(ii) C' = {(B:. R3 \ On - C3 : 6In G C(li), B t,\? C- (R3 \ Q)};

(lii) FI+(-) deno-tes the limit of F on 8M from the exterior (interior);
(iv) n(x) denotes the outer unit nornal vector at x r 0M2, and a x b, a b ame

the vector products and scalar products, respectively.
The situation discussed in §2 is cove••d by setting

(3.5) 1 14po~ k= anM'oo-,, (IM k > 0, lIMk 2 > 0),

Ti.oimm :3.1 (uniqueness). Let thec parameters of tJ~e problem satisfj tMe follow-

(3.6) Re(#A2) > 0 on &Q2, ha \ o, m/ ( \ )/i/ o.

2then Utv exis~rts at most one- solution (E, H) of pro biems (3.1)-(3.4).
Proof. Let EW 0, i.e., (E, H) satisfics (3.1), (3.2), and the radiation condition

(3.4). We us.% Green's theorem for vector fields in 1' as followsJ:

in(B. A- al curl BE curl)ý) clx J - (E x curl i') da.

Then, with curiE, = ik3H and AEj - -k2E, j = 1,2 in 2 and Slt, respectively,
{x G R3\il: IxI < R}, we may add aud use the boundary conditlow, to obtain

(3.7) ,I<,
=-if/31n XE12 dj _ i)12 u -(E x ') cli.

IRom the radiation coudition integrated over the sphere of radius A, we :w. that

(In X 11l2 + IE2) dS 2te U 1 B1 ) i

f In x H -A E12 6 o(I) for It-oo,

and, by dividing (3.7) by )i2 and taking the imn)in ary pxt,

(fj1n k 2) IF12 dX Imr (Al/ (" 2 k) I "kH2I d "

f- J Re (O/I•2) In x EU2 1 - f Oyt -K IV -i 1EI" dS 00).

for I? I In.
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-ad A, /A•2 a From (3.6) we see that hn(Pk/. 2) Ž0 0, Ixn(1/41 2k) : 0, and Re(A/p 2 ) 2> 0 on M.
1'his implies that

f of order (3.8) Im (nuk/p) E = 0 inR 3 \ and JE12 dS-.0(R-.'oo).

Ifmk2 = 0, then, from Rellich's theorem (cf. [4]), it follows that H - E - 0 in R 3 \02.

If, on the other hand, Im k 2 > 0, then the identities H - E = 0 in R 3 \ fl folow from
u, b are the frst identity in (3.8). In either case, n x Ej_ = 0 and n x (n x H)[_ = 0 on 09n,

which implies, by the representation theorem, that E =_ H = 0 throughout Q, and
the proof is complete.

We remark that, for the physically relevant situation described by relations (3.5),
the uniqueness assumptions (3.6) are satisfied, as is readily verified.

Now we assume a layer ansatz and use the integral equation method (see [10]
for some related boundary value problems) to prove edstence of a solution to our'
model problem (3.1)-(3.4). First, we define the scalar three-dimensional fundamental

the follow.- solution corresponding to kj (j 1,2) as

j(X, y):=4ir[x-y[, x-y, j=1,2

and set

condition V(xyy ifxEQyean,S. coadmoa,(x~y) = *(x,y) ifx € 7,y •aM;
(h fxEfl, _(x) {P ifxEl2,

k(x) z, {., if x• E , () a if x E Q

We make an ansatz for E, HI in the form of a sum of electric and magnetic dipoles
spectively, distributed on the boundary surface

4 to obtaln
Ex) to= k(x)curl J__ a(y)O(x, y) ds(y) + curl2 fe b(y)4?(x,y) ds(y),

(3.9)
H'(x) = 7kcurl E'(x)

in RI \ &Q, where a,b = := {c E Divc E C0,*N8Th} with &j'
{c C C°,,(0,1, C3) : n c = 0 on O2} are unknown vector fields. By Divc, we denote

-e that the surface divergence of c E e'j (cf. [4, p. 60] for a definition).
From the propel Lies of -Dj, we see that (E, H') satisfies the Maxwell equations

(3.1) in R3 \ 49Q and the radiation condition (3.4). By standard arguments (cf. [4,
§2.6], we can show that E and H° belong to C'.

The tangetntial components of E' and H' on OfM take the form

n x E'•k= k I aa+ n x rcurl. (a4j) ds(y)

+ n xcurlI2 f b4ýi ds(y), x (-t:2,

Sx H'i, b + n x [4 x curl,, (4)ds(y)]

+ -7a xcur rU a'lý, ds(y), xE 0Q2,
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the upper sign + and number j = 2 correponding to the limit from R.X \ ?, and the
lower sign - and j = 1 to that from the inside fl. These jump conditions follow from
that for the curl of the single layer potential, which is proved in [4, .Yun. 2.26].

The boundary conditions (3.2) for E" and HO lead to a system of integral equs-
tions on Of2 for the unknowns a and b. Before we write them, we introduce the
following boundary operators:

(Qb)(x) = n(x) x b(x), x E M,

(Mab)(x) =n(x) X curl, (b(y)i(x y)) ds(y) xe Off, j=1,2,

(Pjb)(x) = n(x) x curl2 Jen b(y)tj(x:,y)ds(y), x e OKI, j = 1, 2.

Then (3.2) leads to

(3.10) (k, + k2 )a + (k 2M 2 - k:Mi)a + P 2 b - Plb = O,

AAA-:1\Q + I 11.2k2QM 2 -ukQM b(3.11 +÷
+..'Q(p2P 2 -4 uIPI)a-j[-kia +kiMia + Pbj d,

where

(3.12) d(x) = (Mi - . 2)n((x) x (a x p)e'k-a']

+..(x)n(x) x e 2 .x x

Thus we have the following theorem.
THEOREM 3.2. The v=tor functions a, b e COB C are solutions to system (3.10),

(3.11) with d given by (3.12) if and only if the fied (E',HI) from (3.9) solve the
boundary value problem (3.1)-(3.4).

To discuss the solvability of (3.10), (3.11), we write them in matrix form as follows:

(3.13) (L±+K) b~ d
where

'(k 1ý+ k2 )I, 0L= 2 , ,, ,. ,!
t i 2 il

/ k 1M 1 M, P2 - P,(k 2M2 -QJ

K= -AkIMi, 1(1,k2QM2 - Alk

and a = ki/. + k2A2. We treat this equation in the spaces

L+K:&rfxCca --d~ xCT.o

1C .... X i i i i
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\, and the It is known that K is compact between these spaces (cf. [4]) and that L is well defined
follow fiom and bounded,

. 2.26]. Our aim Ls to apply the Wiesz theory for compact operators; we first show that
;~egral equa- a certain compact perturbation of !Q - i/W, is an isomorphisn from onto
troduce the CO". Then L is an isomorphLm from C'• x Cj.f onto C,"' x ,'O, provided that

k1 + k2 # 0.
LEmmA 3.3. Assume tia k- is not an aigenvalue of the boundary value problem

curiE - ikH = 0, curlH + ikE = 0 in 11, n x E = 0 on 0f1, which therefrm admits
=1,2, onaly the trivial solutioni E =-0 in Ql. Farthermo?;, let a 0 0 and let k,,8 satisfy

rte(3R/a) > 0 on &Q2. Let ýi(x, y) = eiA11xYI /(47rlx.-yj) and leiP, .i2 be the operators
1, 2. P•, M2 , whee @L2 is replacd by 4. T"her5 CaQ - i3P + aQM is an isormohism from

PrO'onof di bietvt.LtbEC,*f)wt o . /P nxM

on8f e ~) mrlfb(y)$(x,y)ds(y), H = (1/ik)curlE in R 3 \ &Q. Then
E, H e C1 (1R3 \ &12) n C(?h fl C(1R? Q ), and, from the Jump conditions, we have

Thus (E, H) solves a homogeneous extu'ior impedance problem with boundary con-
dition

nx(nxH)I.÷- nnxEl+=0 oncAZ,

where Q = k3/c on On. Since Re ', > 0, the uaiqueness result in [3] implies that E
H =- 0 in R1 \ ft. Since n x El.- anx E[- - n x EI+ = 0 and we have the iasumption
that k is not a Maxwell elgenvalue in Q, we also have that E as H a 0 n Q, and thus,
from the jump conditions for u x H, we conclude that b = i/k (n x HI+ - n x HI_) =

0 on Mf, which shows injectivity.
(ii) Surjectiuity. Let c (. Cr" (&Q) and E, H E C1 (1V \ fl) n C(l:3 \ a) be the

solution to the exterior Unpedance problem
toen (3.10), cuxl E - kik[ =: 0, curlH+ ik-E = 0 in 3•3\?,
J) solve the (3.14) a1

u x (nxH)I+-Aux Ej =-.c on OR,
a as follows: k

which exists and is unique, ao is proved in [3]. Indeed, the pro-e in [31, together
with the standard estimates in [4, P2.6], show that E and H axe H61de: continuous in
R- \ fR. Furthermore, let E, H E C I (fl) n C(fi) be tLe unique solution of the interior
Maxwell problem

curlE-ikH= 0, curlH+ikE:=0 infl,
( nxEl_=nxEl+ on 6n

and set
i

(3.16) b:= (n x HI+ - n x HI-) on 0R.

Then b E Cý' (af), since curlH = -ikE G CO,-(SI) n CO"-(RI \fQ). Moreover,

(3.17) E(x) = curl2 fb(y)ý(xy) ds(y), x E R' \ ofl,

(3.18) H rcurE in \,9.

-i-urE iR 3 82

I
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In fact, if Ex and H, O'enote the right-hand aides of (3.17) and (3.18), reapectively,
then El and H1 satisfy (3.15) and (3.16). By the abovo uniqueness argument, (3.17)
and (3.18) are satisfied. The second equation of (3.14) then rea.,i

-c (- 2 x b +an x Mb - iXlb on M,

which proves surjectivity. This shows that L is bijecýtive. Thus L- exista and is
4ounded according to the open mapping principle.

Re-r•-i. For A m 0, it is known (d. [4]) that JQ + QM is an isomorphi•.a from
&Z;a onto {c G C7" : Div (a x c) C .L'(O4)}. This showa that the assumption
Re(kA/,) > 0 Is neoessary.

We now apply this result to system (3.13), which can be wiitten in the form

(3.19) L (a) +k (') - ()

where

L L (0 O9(P - P) +~ )

Lewinna 3.3 establishes that L is an isowwophiana froin Cy(012) x CiNf)onto
C•a(M) x C7(012). The operator k Is clearly compact bet-ween these spaces.
Heuce (3.19) is equivalent to

which is a PFodholi equation of the second kind in cq".O8U) x c•"(oi).
To show unlqueneus of solutions of (3.20), or equivilently of (3.13), we assume

that thL boundary value problem (3.1)-(3.4) itfelf has at iuniit one tlution (which
holda, e.g., under assunption (3.6)).

Let (1') G CIO;"(0912) x C?)ý3(OD2) be a solution, of (3.13) fur di - 0 on &I and define

EJ(X) = k•curl16W a(y)4'(x, y)ds(y) + c-,,2ion/ b(y) (x-, y) d(y)

in R3 \X2

and

ik2

Use J.f standaid t otential-theo•tic arglunents and the jump conditions then lead to
the following theorem.

'T•EOREM 3.4. Let k i , k2, Al, A i C \ {0} withi link Ž 0j 1,2),
14k, + 112k2 y 0, ki + k2 54 0 and /3 E C°,A(M) ujWL

(3.21) F(x) k. > 0

= I_ _ I I I I
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tpectively, for all x rE M and some k with [I 0. If the boundary ,lue problem (3.1)-(3.4)
ient, (3.17) has at most one solub, it has ezactly one solumon.

Remarks. (a) From the boundary integral equations (3.10), (3.11), we see that
the more general problem admits a unique solution for all c E Crj, d E C,' (under
the same aasumptions of Theorem 3.4), as follows:

jtu and is curl Z - ikH = 0, curlH4+ikE.-0 inwR3 \a,
nxEj+-nxEc o QUA,

hsm from pjn x (nxH)I+-pin x(nxlH)I_-.. nxE+d on&O,
,, f tor,,, Ixn- x H(x) + E(x) o( Ixl -. 4 o.

to form
We see that, for A iu 0, the assertlou of the theorem cannot be valid for all d e6 e",
but at most for those d e Cia with a x d e C.6 (since Div (a x H) o n- curl -
-iku E e CO"" (8n)). This transmison problem has been considered by WIlde [23].
The limiting behavior for A - 0 is discussed in [8].

(b) In the physical situation desebibed in J2, the various parameters are related
by

jpjk 1 +p2k2 -k ~k3+k wAo,.+a.)00, ki +k2 &0

and

'(On) onto OW(x) -- r(x)

For • i, assumption (3.21) is satisfied.

4. Demmeess of far field patterns. :t is well known (cf. [4]) that the Silver-
Millor radiation condhioa (3.4) implies the asymptotic beLavior

we asume E'(x) -xp(ilxi) [E. (i) + 0 (ixl)]
ion (whLich x

aIxl H()+0(Ir) sli-
and define 11() XI

uniformly in : - x/jxI G S2, with the properties

R .: \ a n -,ý E = =* x E . , • . • •- 0 o n S 2.

The fields E.., H.. : S2 _ C3 are known as the far field patterns of E, H. The
components of E., H, are anAlytic iuactionts on S2.

Moreover, the Stratton-Chu [18] representation theorem (cf. also [4])

ieix lead to . L(x) - curlf e(y)' 2 (X, Y)ds(Y) - _LCl2fh(Y)b(,Yd()
'Sfe ik2  fen (x ~d~)

S= 1,2•),
x E R3 \?I, with e := n x E', h := n x H1, and the asymptotic form

02(x,y) = -,p(ik2lxl) [e_,-,*,y•.+o (lxl-V)] for- Ixi - oo,
Ixl
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uniformly in k e S2 and y E &n, imply the representation

(4.1) E•(i) = ik 2 [ix fJ e(y)e-"2''Yds(y) +: x N(h(Y) x )e-ydj(y)

for i E S2. This representation holds for any solution (Ea, H") of Maxwell's oquations
(3.1) in R 3 \ r.

Now we take the special case of the conductive boundary value problem (3.1)-
(3.4) and denote the corresponding solution and far field pattern by E(x, a, p) and
EB0(* a, p), respectively, explicitly indicating the dependence on the direction a and
polarisation p of the incident plane wave.

Then we can prove the following reciprocity principle.
THEoREM 4.1. Let /3, 41, A2 be related in such a way that the conductive boundary

valtue problern (3.1)-(3.4) admits a unique solution for every incident plane wave (see,
e.g., the last remark of the preceding section). Then

Sq. E:•q , E. p) - p. E(-€lx q)

for al2l,a E S•, kqE C3 with p.(a 0, q.•--0.
Proof. Let ,d,p,q be as indicated. Then E(x, a, p)m E,'(x, a, p) + E'(xa,p)

with EV(x,da,p) = pexp(ik2 a, x), and we can decompose H in the same way with
H'(x, d, p) - (a x p) cxp(ik2 a. x). Then (4.1) implies that

1

+1fe (u is H(y, ap))~ B'(y, -i )d,()

since q.(ixe) - e.(-ixq) and q.i = 0. If (E',H') and (F', G') satlsfy Maxwell's
equations and the radiation condition, Green's formula in W3 \ 0 yields

fl[(n x V'). G' + (n x H'). -F'] ds = 0.

Hence, if we choose Fa - E'(., -i, q),
1 --- H .( ka ) a (n x V (.,da,p )) H (., -- t, q ),I+ ds

ik2  I (+ f (n x '(, p)) 1+ ' F,(', -ý, q) d.

Now n x (El+ x n) = nx( (E,- x n) on 64 and 2nx (Kl+ x n) - jixn x (HI- x n) -
-,On x El. on O&I; thus

C2Tq. -•• p)

I= n [n× E(.,, p) - nX E(., d,p)]• [zH(.,-*, q)l_ - [3n x E(-, -i, q)] ds

""fo E(',-k,q)" [pjnx×H(,,a,p)l_ -/6nx×( x E(-,d,p))

- i 2n X H'(.,aP)]
Lds
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Now we use Green's formula in fl to fLad thatId~')1 fen[(°n X•••) '- +-E(., -*,qo (a* x +' Hýa -)Q d 0,
s equations from which it follows that

JA2 E , a, p),lam- (3.1)- "I
.d,p) and d,
tion d and (nx ( p)) P2 k.q)IJ1 d

"" 1E(',-i, q) ' •A(nX× i(',ae, p) ds

e boundary'N
wave (Joe,- nx ( Y x H(.,-*,q)+)' pe,'. + (a x q(.,- ). (a x p ,a.

- .2 p. (.-a, -k q) ,

which proves the theorem.

E (x, , P) Now we defie

sway with V :=.paA{ X p)"• -Ian: aI:d=S 2 , pGC3},

the space of all posible linear combinatious of plane incident fields on f12, and denote
by ;v the space of corresponding far field patterns. Define e7 by

y), (BI,E2) C 6 If and only if thore exist HI, H2 with

.Maxwell's curl E- - ik Hj, curlHj -- ik.Ej in 1, j - 1,2,

(4.2) nxiE 2-nxE-O0 onixbf,

A 2 liX (U X 1 2 ) -. pinX (n xHI) = hix Fx on 60.

Then we may state and prove the following result.
TIEoREM 4.2. Assume that, for the given values of,3, ul, I2, the conductive

boundary value problem (3.1)-(3,4) admits a unique solution for every incident plane
wv.Then the orthogonal complemnent r-V of Yv in L' (S2) is given by

XI xn) .. (4.3) FvL{he 4(S 2 ): there exists El such that (Em, Eb)Er:61,

I whe-re
(4.4) Eh(x) = J h(d)e-'ka'xd,(&), x E 12,

denotes the to-caUed Herglotz fId with kernel h.
mv. Suppose first fhat h E LT ) with _.L -V, i.e.,

/•hR-Eý.(:, ai, a x p)ds(k) - 0 for ail a E s,, P Ec3.
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Then, by the reciprocity principle (since h(i). - = ad. (a x p) = 0),

J(I x p) .E(- ,-*,h(ýk))dj(i) = 0 for all a E S2, p G C3 .

Interchangin the roles of -:k and a, we see that

(k X P)"JIVE, (k a, h(-a))ds(a) = 0 for all E S2 , p E C3 .

The function

aE(. , h(-d))ds~d)

is the far field pattern F, of the solution (F, G) of the conductive boundary value

problem (3.1)-(3.4) with incident field

Since (A x p) . F•(A) - 0 for a * E 5r", p E C3 , the far field F,, vanishes on S 2 ;
thus V and G' vAnish in fT3 \ n

We define El :w F, H :- G a&nd E := Bi = Eb, H2 := (1/'kz)curl~ b in Q.
Then (El, E2) solves (4.2). Hence Y1 is coutaiued in the set &iven in the right..hand
side of (4.3). The opposite inclusion follows from revrsing the pivcexding argu-uents.

System (4.2) can be considered as an eigonvalue problem for the two parameters

kj, k2 . By essentially the same arguments as in §3, we c=i stablish the hed.holmSalta-native for this system: If (4.2) admits only the trivial solution Ej - 0 in Ql
for j - 1, 2, then the inhomogeneous form of (4.2) has a unique solution for every
inhomogeneity. In this came, Theorem 4.2 states that .v is dense in L (S2 ). Instead
of considering V, we then look at the far field patterns generated by the space

A :- span {dX p)elaj X ( 1 xP)ei2I cS 2, p GC3

for a fixed direction a, E S1. Let 'FA be the spare of the corTespondiug far field
patterns and h E L 2(S2) with j j '; i.e.,

J ()aE(, a, x p) dq(*) = j h- E.. E(i, ,, a,A xp)d 1

for all a E S2, p E C3 . Using the reciprocity principle as before and interchanging A
,,,d k yields

(X P).fs E0 (Xdh(-a))ds(a) = -ik 2 p.c for all kE S2 , p Cc3 ,

with c := (1/ik 2)a1 x fs, E,..(-a,, -i,h(i)) ds(k), i.e.,

p+ f L] 0 forallk E S 2 , p C C 3 .
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From this, we conclude that

C 3. i fx Ea,(id h(-,))ds(a) =ii2c for a i E•S 2 .

As before, the function

c3 S.', E. (., a, hx-a)) ds,(d)

is the far field pattern F,, of thae soluclon (IF, G) of the conductive boundary value
problem (3.1)-(3.4) with incident field EV = Eb. Sinca the far field pattern F,, in
a tangential Peld, we conclude that F() - -ik2, x c for all k e" S2. Thus F"
coincides with the far field pattern of -curl [c,",p(ik:Ix[)/ixj)]. From the unique-
n-a of the far field pattwas, the carresponding fields must coincide; th,13 F'(x) =

ndary vilue -crl[c(•xp(aik 2 x)/['-)] for x on R3 \ n. Again, we define B, := F, HI :- G,
EI := Ei= Ek, H2 :- (1/ik2)cuxlEb in 11. Then (E1,E 2 ) solves

curlEj - ik Hj, culljd = -ikEj in fl, j u 1, 2,

iShM on S 2 ; (4.5) n x E2 - a x 21 = ou x cul exp(i.-jxl) n

:UrIEh ia fQ.
ic right-hand 142n X (n x H2) - JiUn x (n x HI) = PU x El + ."-E- Xn xiX curl? [cp(ikjIx[)
g a guments. L IxI El

e parameters on Mfl This argument establishes the following theorem.he fe0oinlm TmOnm 4.3. Let 0, hq, p2a kt that conzductive boiundar value problem.ion for evry (3.1)-(3.4) admits a unique jolutionfor e" er- incident wave EV. Then the arthogonal
'S 2). J.tead comp•e•ent of .17 of YA in, L•,p 2 ) is gien by.
2 space " ={ E L' e (S2 ): themex Elccxia adcEC3 such. Ut
Va (Z, Jo)•lves (4.5).
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We formulate certain problems in the optimal sign - :ating structures such asm ulticriteria optimiza-
don problems. We review the basic background of 1 problems. prove the existence of Parnto optimal
points, and give necessary conditions. We apply the i-..er to t' c numerical computation of optimal surface
currents for the problem of simultaneously optimizing boti ic quality factor and the signal-to-noise ratio
of a conformal antenna.

1. Introduction

In our eariier paper [1] we summarized a coherent approach to the problem of
optimal antenna design. By foimulating various measures of performance as real-
valued functionals defined in the appropriate function spaces, we can systemnatically
use the methods of functional analysis and optimization theory not only to study the
existence and properties of optimal solutions but also to develop computational
procedures for the numerical approximation of these solutions in corcrete cases. Thus
in [1] we provided analyses, including computational results, for two specific cases:
the maximization of power radiated into a given sector (or sectors) of the far-field
region and the problem of maximizing the signal-to-noise ratio.

It has long been recognized [1 1], [8] (esp. ch. 8) that the narrow focusing of the
main beam of an antenna has the concomitant effect of increasing the near-field
power. Not only may one wish to focus the main beam, but also to minimize the
power stored in the near-field region. Thus we see a typical problem that arises in
antenna design, namely the problem of dealing with several, possibly conflicting,
goals.

The approach used most often in such situations is illustrated by the two examples
in [1]. In the first case we introduced a constraint on the power available to the
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648 T. S. Angell and A. Kirsch

antenna by considering surface currents that are bounded in some appropriate norm.
in the second, we required the so-called quality factor, that is the ratio of input power
to the far-field power (both measured, again, relative io the appropriate function-
space norms), to be bounded.

In this paper we wish to suggest another approach to such antenna design prob-
lems, namely the approach of multicriteria optimization. While well known in other
applied fields these techniques have not been applied, to our kaowledge, to problems
of antenna design. The subject of multicriteria optimization has been most thoroughly
developed in the literature of mathematical economics and is most often associated
there with the names of Wairas and Parcto who introduced the basic notions in the
late 1890s. The interested reader may consult the review article of Stadler [9] for the
historical background and the article of Dauer and Stadler "3] for more recent
developments. Applications to problems in mechanical engineering are described in
[10], which has an extensive bibliography.

We dedicate the following section to an outline of the necessary background
material including the general conditions ensuring the existence of Pareto points and
necessary conditions in the form of a multiplier rule. Section 3 contains a statement of
the optimization problem and the proof of existence of an optimal solution. The final
section contains a numerical example.

2. Notation and basic theorems

We recall that a convex cone A in a linear space Z is a convex set with the property
that

x e A, a > 0 implies xX E A. (2.1)

Note that, in particular, 0 e A. Such a cone defines a partial order, <A, on Z accord-
ing to

X <AY provided y - x e A. (2.2)

In .rder to ensure that the relation is not only reflexive and transitive, but also
antisymmetric we require, further, t.lat the cone be pointed, that is that
An(--A) = M. In this case x <AY and y <Ax implies that y- x = 0.

Example 2.1. The most common example is that for which Z = R" and

A = {x = (x' ... x')Ix' > 0, iz 1, 2. n}.

Then x <A Y if and only if x' < yifor all i = 1, 2, .... n where the latter inequality
involves the usual ordering in R.

Example 2.2. Let Z = SL,(R'), the set of symmetric n x n matrices, and set

A = {A e SL,,(RR)I(Ax, x) > Ofor all x s RR).

Then A is a convex, pointed cone.
In problems of vector optimization we are interested in minimal elements relative to

a given order cone.

Definition 2.3. Let S • 0 be a subset of an ordered vector space Z. Then xO e S is
a muinmal element of S provided x e S and x < A Xo implies x xO.

p a I. .. .. .. . ..I ..........I .I.....
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Example 2.4. Let Z - R with A = {(x, y)Ix ; 0, y - 0} as order cone. Let

S = {(x, y)x > Oyy >, O, xy > }.

Then all the points of the set

{(xy)eSIxy= 1}

are minimal.
The general multicriteria optimization problem can now be formulated as follows:

given a linear space X and an ordered linear space Z, let U c X and suppose
g: U --- Z. Find uo c U such that g(uo) is a minimal element of g(U).

Definition 2.5. A point uo e U is said to be Pareto optimal relative to the vector-valued
function g provided g(uo) is minimal with respect to g(U).

The term Pareto optimal is chosen here for historical reasons. Other terms have
been frequently used including 'non-inferior solutions', 'non-dominated solutions',
and 'efficient solutions'. Some of these terms may be more informative in that they
better suggest the property that characterizes Pareto points, namely that we cannot
lower one of the component values by moving from that point without strictly
increasing at least one of the other components of the criterion vector.

In general, Pareto points are not unique as we can see in the following simple
example.

Example 2.6. Consider the cone A a R' of Example 2.4. Then the Pareto set i.e. the set
of Pareto optimal points for the function

g (x,y) (X)
defined on S = {(x,. y) Ix >, O, y _> O, xy > 1 , is just the set

{(x, y) CSlxy - 1).
We remark that, in general, it is not true that there exists some point that will

minimize all the components of the vector criterion simultaneously, nor is it necessar-
ily true that standard scalar optimization methods can be used to find the Pareto set.
In particular, it is not generally the case that the minimization of one criterion subject
to inequality constraints on the others will yield a Pareto point.

In order to develop conditions guaranteeing that a point is Pareto optimal, we need
to introduce the concept of a polar cone. To this end, let Z be a Banach space with
dual Z*. Thus ZO is the set of all continuous linear maps ;: Z -- . Denote the action
of an element ; e Z* on z e Z by <,. z>. For an arbitrary set E c Z we have

Definition 2-7. Let E c Z. The polar of the set E is defined to be

EP.= {. e Z*I<., z> t< Ofor all z e E}. (2.3)
I Note that. by the li-nearIty arid continuity of /', E" is a closed convex cone in Z*

regardless of the nature of the set E. We shall refer to EP as the polar cone of E. Related
to the cone EP is the set E- given by

E e:={ EP <, : < Ofor all :z E, z 0}. (2.4)

It is clear that t.d- f {0} is likewise a convex cone in Z*. We shall call it the strict polar

I;&
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cone of E. It is a standvrd resuill [4] thai dic Inclusion

int(AP) c:A (2.51

is valid provided Z is reflexive and A is a non-trivial closed convcx cone in Z.a

It is now a simnple matter to establish a i~csufficiunt c:oadition lor a point to Im

Proposition 2.8. Let Z be a real Ecinach ipac-,. ordared by a no~i.-rraial con'cx czone
A and let lA' -A. IfS c:Z and yeSis suixi ihat

Az > < <, y> for allz f 5 (2.6)

then y is a minimal point oj' S.

Proof Let z E S, zo # y. and Suppose 20~ <AY. Thbcti (y - 7,))GzA\ {0,1 1$euce
y - zD > < 0, which contradicts (2.6).

We can now prove a theorem guarantcinjg, ibe e:Yistenct of Pareto po~ints unde~r
conditions of wide applicability. Wc need only recaUL th'.. 1Iulkwing di-fiitic~n.

Definition 2.9. A map g: X -~ Z, X, Z Bowuach spaces, is c,:illed cornple~ely confinuous
provided g maps weakly convergent sequences into normn convergent Scquamur.~e

We can now state the following existemce theorem~.

Theorem 2.10. Let X be a Banach space and Z an ordered refleacive Banach space with
a non-trivial closed convex order coiie A. Supposa that v (itA.5) 0 0. 71iq if U is
a closed bounded convex subset of X and

g: U - Z

is completely continuous, then g(U) has a nmialmal point and U conu~ins a Pareto point.

Proof. By Mazur's theorem [12] U is weakly com ' aci and hence. by the complete
continuity of g, g(U) is compact in Z. If we can show that q(U) c::nrtaiflz i, minimal
point 1, then any 4 e U such that gQil) = is a Pareto point.

Let A~ e int(AP). Then .a~0 for, if 1 - 0, thcn AP could contain a bzfl and hml-2
would coincide with Z*. By reflexivity (AP)P A so that A f O}, &vli~h would
contradict the assumption that A is non-trivial.

Now, for the given 2," consider the map

<A1~Z>,Z zeg(U)

of g(U) R. By continuity and compactness this map has a maximum o,,i g(YP, say at
cag(U). Then

f >, <Z :.,> for all E g(U).

Thus .- is a minimal point by Proposition 2.8.

The assumption of complete continuity of the uiap g in Thcorem 2. 10 implies, in
particular, that g maps bounded sets into bounded sets. Thus 1ýxample 2. 6 shows thaL
Parcto points may well exist even if g does not have this propcrty. Irieed the set of
Pareto points may itself be unbounded. That problems wifii unbouznded sets g!.kU)H may arise in applications, we shall see below in Fection 3. In such cases it may be
possible to show that the existence of Pareto points follows from thy 4;ompactricss of
certain subsets of g(U). In fact, we have the following result.
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TUh-comi .11~ Lei Y be ai ianac sp~ecet rni~d.7 an ordered reficxive Banach space with
Liz" ~a nur -rivlalW ciosfd coavcx order c,'nw A. Suippclsc ,hM int (M) •6 0 and that U a X.

Pthen If : U -. Z is wch thert,.O Sotsne z e~ Z,

[~s r iwn-crpuy and coinpact. thien U contains a Pareto point.

Pr-oof NowL that if -oi iiia on o . hnz sas iia o ()

(n A)c6, "r G'.' (2.8)

WVe havc lo Mow; hat (z, A),-, g(U) - 'zo). Thus let x C g(U) n (zo -. A). 'fhen
x o~- A and also zj, r- z -- A. By additig these inclusionas we obtain x c- z - A. tfiat is
x (! A) r -ý G , 7.'hus zo is also minimal fur g(U). Now, if G, is compact in
Ztheo kch piAool ý,I-Yborciin 2. 10 shows that G, bai a minimal element and the proof
' Omrplete.

V/( co;icudc thi4 ý.ection wait a ntcrssary condition, in the forni of a Lagrange
n~ahi ir rule, w11iýh will tx suitabie fur thm. sp4ecifi. problem discussed in sect;-.n 3

W wA monot gpncral sitatcient, as ~woa as the proof, can be found in the book of
Kirs':h, Waydrj and Wornei [5].

'DTI'Vrzin 2.12. Let A and Z be fBanach~ spaices satisf ing the hypotheses of Theorem 2. 10
and su ppose that g' 2' - Z is, Frwhat aiffcrantiable why'le h: X' -~ R Is continuously
j'pec.Jeg d4 .rerivrabl. L.et

S w (x C 1),i () &-. 0.1

and suppose' thar .ý c S ir .i 1'rcio poi.-,t for g. Yiien there exists a 121e. - AVand ayp _O

~'(:) I- h~$)Jx 0 or.ail x ý-X.

R~emark'. This theorem ~okLs even fot ,,,,ak Pareto points i, that is for thoste i e S thaxt

Sat isfy

im(X I- n ] r'i g-(5)

pro% ide,! wth intl* e0

3. An op~iniaition pinubleim for auvenna iltnign

As described in o.ur earlier paper [1], we consider as an antenna any radiating
structurc Lhat Suppoi-S a flow of charge, or ýuriace current I, arlu wi~ec theiaby
products an electromagnetic field in a homogeneous isotropic medium exterior to the
structure. For definilazess, we consider here the case of a cotiaecird region D C: R1.
w i h non-cinoty interiior, D -. and C kboundary~ S. We shall use D1), for- thu (connected)
exterior domainj R3 \(S v D _), we shall denote points by their position vectors x and
Y, and 'eshall choose the origin of the coovdinates to lie In ih.
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Assuming a harroonic time dependence, e, the field. (E, H), produced by I is
required to satisfy the time-harmonic form of the Maxwell equations

V x E - ikZoH = 0, (3.1a)

VxH + ikYoE = 0, (3.1b)

where Zo (po/eo)IZ Yo = I/Zo, k = co(opo)112 and E., Uo are the free-space
permittivity and permeability, respectively. The quantities Zo and Yo are the free-

space impedance and admittance.
We recall [2] that the fields E and H have the asymptotic representation

E(x) = -- F~i), • (1/r2 ), r-. o, (3.2a)
r

and

H(x) Yo -- i x F(i) + O(1/r2). r -- oo, (3.2b)
r

where i = x/, , and r =Ix.
The vector function F, which has no radial component, is called the radiation

pattern. It is an analytic function defined on the unit ball S'.
The problems that we summarized in [1] involve some numerical measure of

performance, which is to be optimized by selecting the appropriate surface current, I,
from some preassigned subset of admissible currents. The existence and uniqueness of

a solution to (3.1) satisfying the boundary condition

Zofi x H = I on S (3.3)

and the Silver-Maller radiation co.ndition [2]. p. 11'3 for every tangential field

I e L'2(S)= {P e L'(S): 6 -'T = 0 on S)

guarantee the existence of a mapping

.X:: LI(S) --, L,2(S ), (3.4)

which associates to each admissible current I the corresponding far-field pat -n F.
This map, which is not known explicitly except in certain special cases, is known v1i ')e
compact and, by Corollary 4.10 of Colton and Kress [2], it is one-to-one.

In terms of this compact operator we can introduce several different measures oi
antenna performance. An extensive list appears in (1]. Here, we shall consider two
examples of optimization problems based on such criteria: the first problem is one
related to the problem of antenna synthesis, while the sccono land more complicated)
example involves the concept of signal-to-noise ratio.

The classical problem of antenna synthesis can be formulated as follows (see e.g.,
[8]). Given a desired far-field pattern FO, find the surface curreni I whose far field

produces Fo.
Stated in this way, the problem has no solution in general as Fo may not be an

actual far field. In particular Fo may not be analytic. However, as shown in [2], the

range of X is dense in L,•(S'), and we usually formulate the problem as that of finding
a best approximation to F0 measured in some suitable norm. For example, it is

Li __
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common to consider the functional

D(I):= I.(I(x)- Fo(x)F2 ds. (3.5)

Good approximations in this sense can be realized only by producing unacceptable
levels of the 'quality factor' given by

.a ( ):= II1I IIL-2 s)/ ll.Y 1 IIQ:,•s') , (3.6 )

which compares the power radiated into the far-field region with the power supplied
to the antenna structure. Here we suggest that appropriate compromises can be
studied by identifying the Pareto points for the vector criterion

D(}, 2?S'), (3.7)

subject to the power constraint

1111 Q(5 '?s < 1.- (3.8)
We are assured of the existence of Pareto points for this problem by the following

result:

Theorem 3.1. The map.: Li(S)- R2 is completely continuous and hence Pareto
points exist.

Proof. Since the relatively compact sets in R•2 are the bounded sets, it suffices to show
that -9 maps bounded sets into bounded sets. However, this follows immediately from
the boundedness of the operator X" and the fact that S is a bounded surface of finite
area.

As a second example we introduce the signal-to-noise ratio (SNR) definled by
IWIM~i

SNR(x, 1):= S7CO(} i(.) ds (3.9)

where w e LS' () is non-zero on a set T of positive measure. The denominator of (3.9)
is a measure of how much the radiated field is corrupted by noise. For a fixed direction
i and constant c > 0, we can formulate an optimization problem as

maximize SNR(I)
subject to 1ll1 2,,s) <, I and .2 () -4 c,

where _2 is given by (3.6).
This pro'blem was studied, for the acoustic case, by Kirsch and Wilde [6] and was

formulated, as we have done here, for the full three-dimensional electromagnetic
problem :,n [1]. These results generalize the problem for planar apertures that were
first studied by Lo er al. [7]. Here we wish to consider, not this constrained problem,
but the ;ector-valued problem with the criterion

V(I):= ( S(I) (3.10)
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subject to

I o, (3.11)

In order to prove that Pareto points for the problem (3.10), (3.11) exist we shall use
Theorem 2.11.

Let V' bc the set of attainable points. thai is

.r:- {V(I I 0). (3.12)

Since we cannot show the closedness of "t", we extend this set, show the existence of the
Pareto points of this extended set and prove afterwards that these Pareto points lie in
fact in tV, We begin with the following result.

Lemnm 3Z.. Vic set

1"0;={V(I) + ( o0) , #0r t0}

is closed and *"0 n (z - A) is compict .for every z c - . Hence '/"o has Pareto points.

Proof. To show that 1/0 is closed let {I.} : L,?(S), {r,)} = R with r. 1> 0, I. # 0 and

Since V is scale invariant, that is for any scalar z c C\{0}, V(zl) - V(I), we c assume
that 11 -11 L,(S) - 1 and thus {I(} contains a weak-limit point. Without loss of generality
we assume that I -- I weakly in L?(S) for some I with I1IIl t 1. Since A' is
compact both as a map into L,(S 1) and into C,(S 1) we have that X'I. --f..XI in
LI(S') and CQ(SI). We show that I # 0. This follows from the convergence

.q(I.) + Y ii.riI.,s + r1 OzW

since r. > 0 and I X% ll,-t" .;(I II L,'s'). Furthermore
r :uz2  - II l 11 0.

Also we have that oX If -. wol in L,2 (S) and coXI . 0 because of the analyticity of
,fI. Therefore SNR(IJ)- SNR(J) - - zi. Thus we have

'- ~ SNR) I 1. III IIY ,I =V(1) + with s r +
(Z2) G _ (1))

This means that

( --

which proves that "'Vo is closed.
To show the compactness of v o (z - n) we only have to prove that this set is

uOuaudu. LZl

z () and V(I.) +

be a sequence in Y'o r) (z - F). Again we can assume that 111.11 I(•5) 1 and r. > 0.

_____________
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Certainly U 4 .1(I.) + r. 4 z2 and SNR(I.) ;, 0. Again we conclude as in the first part
of this proof that (Ij)contains a weak limit point I with 111 Ls•1. land .,*I. -- ..X in
L,?(S') and C,(S'). From .i(Ij) 4 :2 we conclude that 1l.I j1.,1 2 I l/z 2 and thus
i.I #Y 0. This shows that SNR(I,) -- SNR(I), that is

V(1,) + )

is bounded.
in the light of Theorem 2.11 we know that l'o contains Pareto points. This ends the

proof.

It is now very easy to show that existence of the Pareto points of "'.

Theorem 3.3. Let

be a Pareto point of *o. Then z* e IV, that is z* is also a Pareto point of '*.

Proof. Let

z' V(I') +(0)'r I' 9&0, r* ;b0.
I* 0r*0

Since V(I*)G eY' a *P'O and V(I*) <AZ* we conclude from the minimality of z* that
z* - V(I*) e l. This completes the proof.

Now we shall apply Theorem 2.12 to the optimization problem (3.10), (3.11) and will
use the resulting equations to compute the set of all 'critical points', which, as in the
case of a single-cost functional, contains the set of Pareto points. Note that, for this
particular example we shall not need the full force of that theorem since we have no
explicit equality constraints. Certainly other situations will arise in applications where
it will be useful to be able to handle such constraints and we may bring the full force of
Theorem 2.12 to bear in such cases.

The Fr~chet derivatives of SNR and .2 at 10 e L,(S) are (here and in the following
we write Hi for the L2 - norm, either on S or on SI):

SNR'(10 , I) 7 2X I .1 0 I) 112 .R¢i (i))

-Iy,(1'0(j)12 Re <auXT'o, (oXIl)3,

. ( 1,I) =- 11. lo- - ll- . 1 !l 'Re <To, 1) - 1110 lRe < Y T'o, YTI> .

We now assume for simplicity that D is an infinite cylinder in the z-direction whose
constant cross section we also denote by D c R2 (with boundary S). Furthermore let
I = It with a scalar function I r L2 (S). Finally, let Y be given in the explicit form

XI(i):= a 1(y)e -iX'Yds(y) = 7<1, eik-> 1 with a 2
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L.et 1o be a Pareto point. Application of Theorem 2.12 yields the existence of;, ' U 0
with A. +,a > 0 and - )SNR'(10 , I) + •..'(1o, I) - 0 for all I eLN(S), that is

Ii~ l wY I1 r CII Q).xt'10 II = (o• 0 (,i)#ei'~ - i.x'~Io(i)f 2 = (w•'[o2 X•Io)'1
II.; j 1

or

___ _ WX 10 .1 0) +

LE Io(*)la .... •.. • - I

where Qo - 11 oI11/I11r'loII1.
Now we distinguish between two cases. If X'Io(i) 0 then ,r*A'1'0  (l/Qo)1o,

that is 1/Qo is an eigenvalue of .Y*" with eigenfunction 10.
If A > 0 and .X/(Io(k) 9 0 we set

Then 11 is also Pareto optimal and .V'( 1(,) - Ilw . LI, thus SNR(11 ) =, IIo.C'I 112,
and

+ P(o- AQ0 X*YI1) 6elki, on S. (3.13)

Therefore we see that if 11 is a Pareto point of (3.10), (3.11), that is normalized so that
I]I(i)- I ,X11 2 then there exists A i 0 with (3.13) where Qo - 11 Il/II.) I 112.

Solutions of (3.13) ar: called critical Pareto points of the problem (3.10), (3.11).
If, on the other hand, I, solves (3.13) for some Qo and A >0 then

J " • , < 11, dei l'> _ IIC0~x'r I • + / II I + 11 11 - pQ o 11 ,, '" 1 112,

that is

Xence .l 11) - o, I1= 111 l I1 Q 0 Q I II'I11].

V Hence
.X%1(i) 11 cX.4 I 112 is equivalent to l1/, 1I2 _ QoIIX.•' 012. (3.14)

Equations (3.13) and (3.14) describe a one-parameter family of critical points that
contains the set of Pareto points or even the weak Pareto points.

We want to illustrate this approach via the necessary optimality conditions with
a numerical example (cf. Kirsch and Wilde [6] for the related example where 2 is fixed
and SNR is to be maximized).

We consider the case where D is the unit disc in RI and w is the characteristic
function of a portion of the unit circle, for example,

oif th 1 ie2,
0otherwise.
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For this choice we can compute .. r explicitly: let
00

I(s) := I1(s) = " xeJI'.

Then

S2x
,I(r a - u X x i] c k'c- o$(,I-) ds

Jm -0

- 27ro x( - i)JJj(k)C'J,

where we have used the fact tlhat

e -,• _ ( - j),RJ(J)eL.,.
Ci Ik cos Y ".(k 'T

Here, J. denotes the Bcssel function of order n.

Fig. 1. Solution branches

_A_

L[
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Thus we see that Y. is an infinite diagonal matrix with elements 2ra( - i):J3(k).
Likewise ,.• ' is diagonal with elements dj:- 4Ir112 IJ(k)2 and

(*i1

, ,l)() - 27rI a 2  O Xj( - i)JJj(k) f elk'6" - )ds
J m-- aO

tN--, J.--O

where the coefficients aqj are defined by

al 2Irlal2( - i)JJj(k)i'JI(k) el(-1* ds

, 27rto'aIi'-JJj(k)JL(k) (eIU-l)12 - eIU-1r), if j y& !,

27roia 2Jj(k)2 (tr - t1), if j 1.

We project equation (3.13) onto the finite-dimensional space

X. - span {e'J': Iljl 4 n}.

Table 1. Solutions of Equation (3.15)

A2  Qo SNR Qo SNR Qo SNR Qo SNR

0.2 7.39 36.23 11.20 0.52 12.64 4.32
0.3 7.38 30.46 10.67 0.18 12.58 3.46
0.4 7.37 26.99 10.50 0.10 12.54 3.01
0.5 7.36 24.43 10.36 0.06 12.52 2.75
0.6 7.36 22.32 10.29 0.04 12.51 2.57
0.7 7.36 20.51 10.25 0.03 12.50 2.44 14.94 0.28
0.8 7.35 18.92 10.21 0.03 12.50 2.35 14.78 0.20
0.9 7.35 17.50 10.18 0.02 12.49 2.27 14.67 0.15
1.0 7.35 16.23 10.16 0.02 12.49 2.22 14.58 0.12
1.1 7.35 15.09
1.2 7.34 14.08
1.3 7.34 13.17
1.4 7.34 12.33
1.5 7.34 11.58
1.6 7.33 10.92
1.7 7.33 10.34
1.8 7.33 09.78
1.9 7.33 09.28
2.0 7.33 08.84 10.06 0.00 12.48 1.95 14.22 0.03
3.0 7.31 06.01 10.01 0.00 12.48 1.86 14.11 0.01
4.0 7.31 04.65 10.01 0.00 12.48 1.82 14.05 0.01
5.0 7.30 03.88 09.91 0.00 12.47 1.80 14.02 0.00
6.0 7.30 03.38 09.91 0.00 12.47 1.77 14.00 0.00
7.0 7.30 03.04 09.81 0.00 12.47 1.75 13.98 0.00
3.0 7.29 02.73• 09.81 0.00 12.47 1.75 13.97 0.00
9.0 7.29 02.60 09.71 0.00 12.47 1.73 13.96 0.00

10.0 7.29 02.45 09.61 0.00 12.47 1.73 13.95 0.00
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Thus equations (3.13) and (3.14) take the form

(A + AE - PQoD)x = r, F (I - Qodj)IxjI2  0, (3.15)

where E is the identity matrix,

D -diag(dj: Jjj 4 n), with dj -= 'a'jk'

*A - (aj 1),*j. -a. .~and rj -=~~kc-J

where i - (cos 6, sin 6).
We have computed this example for the choice k - 6, tj 40'. t2 - 140',

6 900 and n - 16. For large ranges of Ai (from 0.2 to 20) we computed all the zeros
of the function

p(o;: (I - Qodj)ixjf2 ,

where x solves the first equation of (3.15) for Q, ,by a simple bisection method. It turns

Fig. I. Periurbations of minimal solutions
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out numerically that this function qp(Q0); has several zeros that correspond to local
Pareto minima. Table 1 contains the parameter 2 with the correspouding Qo and
SNR.

Figure 1 shows the different branches of solutions of these necessary conditions for

this range of /-valucs. Numerical tests show that the branch of solutions correspond-

ing to the lowest Q-value is likely to consist of Pareto minima. In Fig. 2 we show the
distribution of ( - SNR, Q)-values corresponding to complex perturbations of the
individual components of the surface currents x associated with each of three
( - SNR, Q) points on the lowest branch. In each case, all the resulting ( - SNR, Q)
pairs lie outside the negative cone as indicated in the figure. Hence, within the range of
the perturbations, the points on the lowest branch appear to represent Pareto minima.

We note, finally, that this lower branch shows a relatively wide variation in the

value of SNR for very small changes in the value of the quality factor Q. This indicates
that one should be able to achieve rclatively high values of SNR without an appreci-
able degradation of the quality factor.
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1. Abstract

In recent years, there Ihas been increasing interest in the use of iterative methods
for solving a variety of problems in propagaiion, scatiering, and inversd F;atteiing of
radio waves. In this paper, we re-,*!w a number of the most-prominent methods for
solving operator equations, arising in wave-ficld problems. 'Dit o a-e used
both in time.domain and frequency-domnaln problems and, in the frequency domain
are most useful at low and intermediate Frequencies. In direct-scatering protleni,
we describe the essential features of the Neumatn series, over-relaxation methods,
Krylov-subspace methods, conjugate-gradient and biconjugate-gradient methods, and
the conjugate-gradient-squared technique. Most of these methods are shown to be
derivable from an error-minimization principle using various error criteria.
Convergence of these methods is discussed. The ertor-minimization principle is
shown to underlie a number of approaches to inverse problems, of reconstructing
complex indices of refraction and scattering shape, from scattered-field
measuremcnts. The same iterative methods used in the (linear) direct problems are
also applicable in the (nonlinear) inverse problems.

.roduction

Radio-wave problems are often formulated as integral equations, and it is this
form which serves as the starting point for most numerical solutions. Typically, the
integral operators which occur are boundary integrals, when considering scattering
by impenetrable or penetrable homogeneous obects, and domain integrals, forpenetrable inhomogeneous scatterers. These operators are invariably complex and
non-self-adjoint, which complicates most numerical approaches. in a large number of
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Electromagnetic Scattering by Indented .Screens
John S. Asvestas, Senior Member, IEEE, and Ralph. E. Kleinran, Senior Member, IEEE

Abhtanct-The problem of three dimensional electromagnetic consisting of the extrusion and its image in the plane. a
scattersing from a peffectly conducting screen with a bounded bounded obstacle in free space.
indentation is formulated as a sysftm of bounfdary lflt*et' - The picture is dra=La. ;afl changed when the conducting
equatons orthe electric current denity onthe cav'ity waflland ~
te interface between the cavity and free space.. It is shown how plane has indentations rathe~r than extrusions. The previously

the fictitious current density on the interface may be eliminated cited methods of reduction to simpler problems which do not
resulting in an integral equation of the second kind for the curret involve integra~ls over the infinite plant are no longer available.
density on the cavity wall only, with no integration over the Moreover this cas has become important since it has been
nlafnite screen. In addition, Integrf..l represexitations are derived osre htsalidnain a osdrbycag h
that represent the field everywheire in space in terms of obevdtatmalidhainsmycnieebycag h
current density on the cavity wall only. Furthermore, asymptotic scarttering characteristics of otherwise smooth surfaces.

expesosfor the far field are also presented. The equations T1his problem has received considerable attention over the
and representations simplify considerably in the two-dimensional yem-s. Most of the boundary integral formulations in the
saltar case and results are presented for both TE and TM engineering literature are based on Schelkunoff's equivalence

polarizatton. principle, which is essentially an application of the vector
j Green's theorem, see Chen (10]. coupled with the network

1. INTRODUCTION formulation of Mautz and Harrington [111. The scattering

1~) UNDRY nteral quaionforulatonsof lecro- domain is decomposed into two p-,rts. an infinite half space
.j) agnmetic scattering problems serve as one of the primary and a cavity in the plane. The two are connected via currents

base fo nuerial pprximtion. Te eectic nd agntic on the fictitious surface between th,! cavity and the half space.

cled integral equation formulations of scattering of an incident However-, the integral equation for the closed domain bounded
eld roma bundd ostale uinesedin reespue ~ by the actual physical indentation and the fictitious surface

thel andm exeao toude thacl cavirse are couple spyc aaittiuragei

well known (e.g., Poggio and Miller [1], Colton and Kxess separating the cavity from the hailt space is plagued by the
[2)as are alternate forms which have been developed to usual problem of non-uniqueness at the cavity resonances,

eliminate jillposedness (non-uniqueness) of these equations at e.g., L.ang and Chang [12]. In this approach the fields interior

combnedfied ad cmbied oure euatons(e.g., Brakhage current on the interface between the cavity and free space. The
andWeri-t [3, Bxto an Miler(4) Harintonand Mautz virtue of this equation is its relative simplic-ity. however, the

[5) an moifid Geens fncton ethds a.-, Jnes[6), price one pays is the occurrence of spurious resonances.
Kleimanasi Roah [1],Josr 18, ad Yahiin [1).Recently a different attack has been made using a corm-

Whe ila sattrin obec isaboe aconuctngplane, bined finite element boundary element approach wherein the
the integral equation formulation is much thea same. Using the boundary integral equatior' arising from the exterior half space
uiethod of images. inw-grals over the plane may be removed is coupled on the fictitious surface with a finite elemecnt.
by introducing the Green's function for the plane as tire formulation for the flelds in the cavity (see Jin aiid Volakis
fundamental solution.. The resulting intcgral equations are [13, 14], Jeng [15]. and Jeng and Tzeng [16]). A variation
changed only by replacing the free space Green's function onl this approach was used by Wang and Ling [17, 18] in
by the Green's function for the plane and adding a reflected which the cavity was decomposed into subelements each of
acild to the known tcri. which was Lreated via integral equations on-the subelement

When the scattering object puncture., the conducting plane, boundaries. These hybrid approaches apparently eliminate theLI the problem is still easily reduced to familiar integral caqua- resonance problem (although no theoretical uniqueness proof
tons. In the case of scattering by extrusions On a pcrlc~ctiy is available yet) at the cost of a finite element rather tha
conducting plane, the presence of the plane may be taken boundary element computation.
into account by combining the results for scattering from For related scalar problems hin acoustic scattering, Willers
an unperturbed plane with the field scaitered by an obstacle [19, 201 derived boundary integral equations for unknown

Manuscript received Ji'nc 15. 1992: revised June 29. 1993. 'Thds work was showed that these equations were uniquely solvable for all k
supported in part undcr AFOSP Giant 91-0277 and ONR Grat N400014-91- frbt iihe n emn onaycniin.1lw
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A01I26. BepgNY 11714-3580. of frce..space Green's functions over the entire boundiary,
R. E. Kicninmi is with tie t[einer for the Miathematics of Waves, Depart-

j nent of Mathernaucal Sciences. Univertiiy of Delaware. Newark- DE 19716. screen plus indentation, and ilicrefore are awkward for nu-
IEEE Log Number 9215()46. rnerical implementation.
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Z example if de Cartesian components of E(r) are given by

incident (Fr) = (E. (r), E, (r),E E(r)) (2.1)
wave

X S. = Cxy~z) then by E4(r) we mean

Si r (xEy,z) -(r) = (E7 (r) , Ev(r), -E.(r)) (2.2)

x-y plane ' ConsistensiA this notation we denote a position vector by
.-.a ...... L ----- Or = (x, ,z)aeits image inhex-y planebyri = (x,, -z).

Moreoverwedaoe by Di and Si the images of D and S in x-
JD y plane nl by Df that part of the upper half space excluding

• i=(,y,-z) Di andS~

If the iiýn is absent, so that we are treating scattering
by a pc&s conducting plane, then the total field may be

4 '":found by I•medwx of images to be
Fig. 1. Geometry of the Indented Screen Problem.

SPrE" r := -- E nc(ri)

In the present paper we develop boundary integral equations 11°(r) := Hinc(r) + II~nc(ri) (2.3)
for the eiectromagnetic indented screen problem that avoid Since (VE'r). HWC(r)) satisfy the homogeneous Maxwell
the introd uction of a "magnetic" current density. We obtain equations
integral euatioits in terms of an electric current density on
both the caity wall aDi the interface between the cavity and V x E(r) = ikZH(r), V x H(r) = -ik-YE(r) (2.4)
free space, and qhowv 'ow these lead to a second kind integral except at s points, if any, in the finite part of the planc,
equation for the electric current density on the cavity boundary it is r lczifid that (Ei(r), He(r)) also satisfy the

only. This approach is based on the direct approach using homogenw Maxwell equations except at source points and
Green's theorem iather than a layer ansatz. The integral equa- their iam. The quantities Z and Y are respectively the
tions obtained do not involve any integrals over the infinite free-space edance and admittance. Moreover when z = 0
screen and, thus, lend themselves to numerical computation.
Moreover, these equations are expected to be free of cavity . X E'4(r) = 0, . E0 (r) = 2i. E'a(r) (2.5)

resonances thcugh this is still to be proved. and
In Section II we state the problem and in Section III the

main results: an integral equation for the current density i x B(r) 2i x Hin'(r) i. R--H(r) = 0. (2.6)
on the cavity wall and integral representations of the fields
everywhere in space in terms of the solution of the integral Here i denows a unit vector in the z direction.

equation. These representations simplify considerably in the The prcm of dibe indentation gives rise to fields in D asequaion Thee rpreentaion siplif cosidrabl inthe well as a scasemid field in the apper half space leading to the
far field and the results are presented in Section IV. Section V
contains the corresponding two-dimensional integral equations natural demposidon of the total fields
and representations for both transverse electric and transverse E(r) = E0 (r) + E E(r)
magnetic polarizations. The derivation of the main results is H(r) = H°(r) + H'(r), z > 0 (2.7)
presented in the Appendix. where (E',H') satisfy the Silver-MUller radiation condition

for z > 0. A more precise statement of the scattering
problem then is: for a prescribed (Einc,Hinc) find (E,H)

II. STATEMENT Or T1E PROBLEM in the scatmig domain consisting of the indentation D,
The geometry of the problem is shown in Fig. 1. The domain the upper half wace, and a such that (E. H) and (E', HI)

of interest is that exterior to an indented perfectly conducting satisfy Maxid's equations in D and the upper half space
plane. The plane is taken to coincide with the x-y/ plane respectivelyadi x E = 0 on oa' and S or equivalently
in a Cartesian coordinate system. The bounded indentation, fi,,E =0 an a' and d xE =0 on S. (2.8)denoted by D, has a boundary consisting of two parts: S which

lies in the lower half space and ar. a portion of the x-y plane. In addition we reqaire that fv (CE2; + IH12)dv < ýo where
The entire plane consists of a and its unbounded complement V is any bounded subset of the scattering domain. This finite
ac. In the scattering problem the boundary consists of S and energy conditi, ensures fulfillment of the edge condition at
o=. the inters-aion of S with the plane. Note that since a is in

We consider an incident electromagnetic field (Enc(r), the scattering domain. E and H (and their derivatives) are
Hlnc(r)) originating in the upper half space. with the restic- continuous dtm.
tion that no sources exist in the image of D or its boundary In this paper wvi present boundary integral equations over
Mro assume that all field quantities have a harmonic time finitc bounaries whose solution gives rise through a represen-
dpefnwence. e-'". which is suppressed. The subscript i on tation theorm to the solution of the problem described above.
a vector quantity indicates its image in the x-y plane. for which we referm hereafter as the indented screen problem.

"4 I 'I ' i .
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]fl. MAIN RESULTS If (E, H) solve the scattering problem defined in Section 11I

We define the free-space scalar Green's function as then

C(r'r) e ikir-r' (3.1) jJ,(r) x VG(r,r')da

47rjr +fJs(r) x VG(r,r')dd = •-(r),z' > 0 (3.16)

and introduce the Dirichlet and Neumann functions for the
full plane 2ik J,(r) x VG(r,r')dc

SGD(r, r') := G(r, r') - a(r, rý) (3.2) + Js(r) • 1a(r, r')ds = ikH(r'),r' E D (3.17)
CN (r, r') G(r, r') + G(r, r'). (3.3) dS

Here rý is the image of the point r' in the x-y plane and GD JsJs(r) -(r, r')ds =ikH'(r'), r' E Df (3.18)

and GNv satisfy the conditions and

GD(r,r') =--aGNv(r,r') =0 for z = O. (3.4) LJs(r) . V x .(rr')ds = k2 YE(r)',r' E Df. (3.19)

We also introduce three dyadic Green's functions All four representations are derived in the Appendix. The
first two, (3.16) and (3.17), show that the electromagnetic

r(r, r') = ikV x G(r, r')! (3.5) fields (E, H) may be represented everywhere in the scanering

El(r, r') = ikV x [GN.(r,r')I + GD (r,r')i22 (3.6) domain in terms of Js on S and J,, on a. For these two
1( current densities we can state the following.
.r,') ikV × [GD(r,r') + GN(rrr)] (3.7) The current densities in (3.16) and (3.17) are solutions of

where I is the identity dyad and It is the transverse identity, the coupled pair of boundary integral equations

+ (3.8) js x [Js(r) x VG(r,r')]ds

We take V to operte on r and V' to operate on r'. These J,,(r') - 2aJ(r'),r' E a (3.20)

dyadics satisfy the foikwing distributional differential equa- fi'L . )dions S 3sr.Far ']

TV XV X xT- k2I = -i/tV x 6(r,r')I (3.9) + 2 L'
V7 X 7 X r1: k2 ri = -ikV7 x [6(r, r')l

1,.+iJs(r'),r' C S (3.21)+6(rx,r,)(I -22)] (3.10)=2

V X V X 12 -k 2 r 2 = -ikV where

x [6(r, r')I - 6(r, rý)(1 - ii)) (3.11) J 0 (r') z' x E°(r'). (3.22)

and the boundary conditions Equation (3.20) can be considered as a definition of the

. X1 =1-, ' XVx2 = for z =0. (3.12) fictitious current d&nsity J, in terms of the real one. Js. We
-= fcan use this definition in (3.21) to eliminate J, altogether and

w tobtain the following.iNow assume that (u, H) satdsfy the scattering problem defined The electric current density Js in (3.16)-43.19) is a solution
in Section II. Let us introduce the electric current density of the boundary integral equation

JS f x HI on S (3.13) ) - x [(K o Js)(r')] = F(r'), r' E S (3.23)

where ii points away from D and the auxiliary current density where
J, := i x H on o. (3.14) F(r') := fi' x J°(r) x VG(r.r')da (3.24)

Since S is a pan of the physical perfectly conducting boundary, and
Js is an actual current density but since a lies in the scattering
domain and is not part of the physical boundary, J,, is a (K oJs)(r') : /Js(r) .2(r. r')ds
fictitious electric current density. While it is useful to use 3, ik
in the analysis it is not essential as will be shown. Nevertheless + 2 ds f da" { x [Js(r) x VG(r.r')]}
it is in terms of these two currents that we way represent the Js
field according to the following representation theorem: x V"G(e"•, r') (3.25)

i F
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In (3.25), the integration variable on S is r, while the one vhere [r•[ = 'j1 = r' and i'• = r•/r. Thus in the far field
on a is r" and V" denotes the gradient with respect to r". The (for z' > 0 or 0 < 0' < 7r/2)
unknown current density can be extricated from the integral
over a in (3.25). and we can make the following statement, i+eikT' r
alternative to the one above. H'(r') isa-' {Js(r) - + i'- .r]xI

The eleciric current density J s in (3.16)-(3.19) is a solution + r If '•''r - "(
of the boundary integral equation + Js(r) - r ' x ft.ds (4.4)

•Js(r') - (L oJs)(r') = F(r'),r' E S (3.26) or

where F is defined in (3.24), and ik -

1 S~' 47rr' isekIp~) ' i
(L o Js)(r') := - dsJs(r) . {-•r 2 (r,r') x fV + e-÷:r[Js(r) x i- [ ii-]]}ds (4.5)

-2 da"VG(r, r") x 1IG(r", r) expression may be further simplified by noting that

+ (,' x i)V'G(r", r')] (3.27) Js(r) x i'-[ + ii] = Js(r) x i' (4.6)

Once the current density is known, the fields in Df can and
be found using representations (3.18) and (3.19). In order to
determine the fields in D and its image Di one must first Js(r) x i' - i]= (Js(r) x i')j = -(Js)i(r) x iF (4.7)
find J., tom (3.20) and then use the representations (3.16)
and (3.17) to find the scattered magnetic field in Di and where
the total magnetic field in D. Additional, simpler looking
representations for the fields may be obtained in terms of the (Js)i(r) = Js(r) - 2Js(r) • li. (4.8)
fictitious magnetic current density

M,, = i x E on a. (3.28) Then (4.5) may be written as

Two examples are [keikr e "k g :

2J M,,(r) . V x 1(rr')da = k2 -ZH` (r'), z' > 0 4 7 4r7- [S(r.
j~ 7 g(4.9)

(3.29) Note that the term O(--,) hs been omitted from (4.4), (4.5)
r= and (4.9). The electric far field is easily obtained from the

2 M,,(r)- r(r, r')da = -ikE'(r'), z' > 0. (3.30) relation

While these are initially appealing because of their simplicity, E' = -Zi' x H8 . (4.10)
they involve the calculation of Md,(r). While it is possible to
express this quantity in terms of Js and J, this calculation
involves a number of additional integrations so that the sim- It is observed that the far field is expressed entirely in terms
plicity gained in the representations of the field for z' > 0 is of the current J. on the indentation S.
paid for by the additional work in finding M,.

IV. TIM FAR FM1W V. TiE 2D CASE
Both the integral representations and integral equationsThe far field is most easily determined using the rmpresen- presented previously simplify greatly when it is assumedtation (3.18) which we repeat here in expanded form that the indentation is cylindrical and all field quantities

Js(r) -7 x [G.,N(r, r')I, + GD(r, r')-i]ds are identical in planes perpendicular to the cylinder axis.
Specifically, we assume that the z-axis is the symmetry axis.

= H(r'),r' E Df. (4.1) that the scattering surface consists of a curve S in the 1,-a
plane and two semi-infinite lines on the V, axis. that all fieldR ecalling the definitions of th e G reens functions, (3.2) and u n i e ar i d p n e t of x a d we ei e th G e n'quantities are independent of r. and we define the Green's

(3.3), and employing the standard asymptotic forms for large function to be
ri we see that

VcN = -,irre-kr + f:e,-kf; r] + (r]2) (4.2) G(r.r') = H" ho1)(klr - r') (5.11

VG,, = 5t + 0 (4.3) where r = y. :. and r' z'). The image r, of r is z,
47rr' • 2 We then consider the following two caues.
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A. Transverse Magnetic Polarization: The auxwiiary unknown y on cr may be eliminated yielding

Hem we assume that an integrWl equation of the second kind for the basic curmnt
density kon S

EIc(r) = u'¶(r)k = uLc (y, z) (5.2)

E0 (r) = ut(r)iku(r) - ui¶(r) - uinc(ri) (5.3) --- -jU(r) K(r.r')ds

E(r) = u(r)i, E(r) = u'(r)i. (5.4) -/ a u"'(r)•Gr(r. r') (5.15)

Tbe boundary conditn (2.9) then implies that u(r) =0 on r S

ac U S. Using Maxwell's equations we find thim wiete

1 v,.(r. r') f• 8 Clr".r,

H(r) = -Vu(r) x xL (5.S) K(r. r') = (-r') " r

gkz dill'

The surface curnmt densities becow•e G da" r.r E' (.16)

IOu. 
an

-on S W5.6 wee tham11st is "o,1e)fgo eS

I &U. Th• u aD• oo a, mabe toW i a mque•ie from,--•-•Tx on 1 )•.
--- X 041 7 ~(5-91 Wn i!.13) Once ADl of thate untious we obsamned. ube

and memtms fa 3as 91 9"-5 1I! ma) be ud to dewsmae
dte ied ast wn pmw n the scavervg domam i shouW ti

M.=Uon 0, =a& edbos-%'.U W if tw ft fcd isft qualtuty al umema
gt may bithela ed thmup 0 12• toly in wm- of P! as

Te basic currnt denuty' is on S obtle v 00 5. the ba s-w.jmi-w deatu. to be
th Liesc~ ame auxia. -.-wr ~ ekww Openan4 C, - 1ý* -
with the curi on tiim etanass t3.16) -w ..3-4- and u" r = - /- C-." & - " -, .
taking into account 1)-4 !.8). Ica&l to the rN-eiemaaous 2 W .5i

Ou r -0 - 45)s
2 u 'LG (r.r', do - .. ,- G, r rO '-- 'r-- 5

.-•r". > 0 ý- 9) I JT•ir .e Lec P:,-.a'znon

and In ma --Me C ustme Lv

[Our)_ . & [ ir!_ H'. r u-v` r x-, a -r x,,
- 2 j o i !s (r . r ", d o - G ..fr r d oO2 f 7-.2rs . H' r v t r x u • .

= uir ý.r' e D -. ;•H r =r r~rx H' v v -r m.t.•

with the itgratiom bcmg withm tespmi to arc eaph Equaion !4ateu % t-4jv~ :n _ --%a
05.9) may be rewnaen a Gnee's dwomn D awl tde
fact that u =0 on as E r 7 ---- '• U x52

6'G r .r" .a * w i K
2 f,-u ---, do r,.z' > 0 5$ -s' 1w tl - :

ahich may also be obtaind ditiecd) trow (3 X) Sice - .W -

&inge layv disturuuoo is cmonuouL. 4S 91 Ioid for: -
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and VI. CONCLUSION

, G. r sv oGD(r. r') In this paper we have derived new integral equations whose2 v(r) do'+ v(r) o ds2 j von solution. used in conjunction with new integra represrntatior.s

= v(r'). r' E D. (5.27) also derived here. give the field scattered by an indentation of
arbitxary shape in a peirfectly conducting plane screen. Integral

EquaCion (5.26) nna. be rewritten using Green's theorem in D equations of the second kind for the unm own elctic current
and the boundary condition (5 22) as density on the wall of the indentation a• found and it is

2 ,rpr, how'n that the field ev-aywbcr in space may be rpresented
.Gir. r" Ido = 04'r".-' > 0. (5.28) in teams of this quantity. Additional representations involvng2j -a-jir - fictitimus electic and magnetic current densitis on the plane

a result uhich my also be obaLned dire-tly from (3-20). Note inte.ace bemteen the indmauion and free spce am presented.
that the ;c wnuaw" of the single la%=e ensures that (5 28) holds It is cotmieured that, while alteimave integral equacom for

aben :' =., and heace. týhs equamo ma• be used to define these fictitious cumtu ha%,e exhibited the familiar ptlm of
v' o1 0a in termS of P. on a. botev-. it is preferable to use r oo-4,':'qae tolvabi•ry at frequencies corresponding to cavity
on , and s as the bWeuc uktio-s. Equiuoa (5 2S) represents resonmaes of the saucturt bounded by the ndentation and the
V, fov ) 0 inurms of ot k oa r.-tas .! 2 r•6 ru res v . berfe tweem the iudenatzion and fret space. the equations
oa boeh r ad S Equ.amz 'ý3:) ho*e'er. -ehds presented here are unlquel. wlvable at all frequencies. The

; r.r , iplizi.sazA thai result %hen the stucture is cylindincal are
/ r - i--- --• t' r r 1D, -5-9) presented for both uasmerseelecic and wntrasverse magutic

0polanztmons Fin.lly the far field representations in terns of
iuc.% reweicn t .. Al I-ass X: -_,in &rms of . oni'. on 5 Mitepals of the elecuic current density only oer the walls of

T insg& equations fm v on S and -r are !ound from .3 2; th indeutanon aare pen for the general 3D case as well as
aind 3 toW the 2D caes for both polzrizations

f / Gr r 6(. r rSr -/:r---. a -= - d - . .0; A&LN•.DIX

Here we uidicate how the integral representations and
r ... r equAutons ot Secton nl are derived. The basic dyadic identity

-GV-r r &Cr r" f-r dus purpose is•: r t • r . . . . - ' • ?.

-0 5 t0: 53) p a7

"%,'tk 4.) Ak-ad 5 :1, 'a% bet oredrend a a sya Mtrnof = f .i :a x (xA)+(xa)x dSx~ (A.l)inseg-ra tequwmtseu !or :he .-0o ;& f'untions -on 5 mid .B•
-o .". ;,jie a•uu, ar.Amr. - on uma% ehinnated where a and A are twice differentiable vector and dyadic

•,-et;W a F m rws-on of ft ux-od Lind for r on S: valued functions. respectively, in V and a x (V x A) + (V x
Sr . r A rrd= t' r. r- a. r) x A is conunuous in V U B, V denotes a domain in IR3

-" -rr with boundary B and fi denotes the unit normal on B directed
5".32) away from V. This identiy is found., for example. in [21].

fitv If it, I = 1.2.3 denote rectangular unit vectors (xi = x.
K. aoG, r. r dG(r.r"' x2 = i3. X = i) we define the dyadics

an ] N~ i ( V.. elk r-r'I )
G,r r(r. r') := - - t = 1,2.3.

b - r.' r' C 5 3 47r Ir -.... (A.2)

*i .s .er t*.%at s _ .s the bauc current density. When it is Identifying A with r and taking V to be the domain interior

szorwn t 1n 3 •0. rna% be used to define t on u and once these to B and exterior to a ball of small radius centered at r', the
q.a.btes hahe betz found. the reprsentation formulas (5.26) above identity can be used. letting the radius of the ball go
and .•5 - ma% be ;ad to define t in the entire scattering to zero, to obtain
Sonia-- ,. he far field ma,. be deterrmncd solely in Theorem A.] IfV x V x a - k'a = 0 in V, then

K trnms f ~ r 'rorm 5 i to be
'¢•S ~~~ ~ ~ ~ i 'f",':• ' "tt enair) xv r4)(r.r')) -(V7x a(r)) x F(1(r~r')]ds

= I k •k-,- V' x a(r'). r' E V

= 0. r'' . (A.3)

W here V= • B.
- -t1 The denvauon of this theorem is a standard, though sensi-

u'e. process but we note that both terms in the integral over

-- _=I



25 1E TRLNSAC-IONS ON ANTENNAS AND PROPAGATION, VCL 41 NO. 1, JANUARY 1994

the boundary of the bail contribute. that is. if B.(r') denotes where V, ~ ~ and r, is the image of r' ýi. thethe boundary of the ball of radius e and center at r' then x-y plane. We define the dyadics

Oim ft -a x (V x rýt)(r, r'd (r. r' ) (r. r:).V)(r.r!)
4-0fa ,(rW)

ik.. ± '(r. r.) + "(3) (r. r') :F V') (r. r',)S- t-k .X V' x a(r'). r' E V (A.4) •ikV x{GN(r~r')*x+GNr')""Go(rr, --

and 
(A. 13)

-oim f . (V x a(r)) x 't) (r. r')ds with Gy and GD defined in (3.1)-(3.3). With theie definitions
it is straigh'oward to verity that the boundary conditions3 2TX'X. V' x a(r').r' E V (A.5) (3.12) are autisfied; that is.

where use i dOf eexpansion 
1xr= xV~x =.=Q for :=0 (A.14)

atr) = air'" - (r -- r') V'a(r') + O(f ) (A.6) nd moreover that
forr onB, (r') Th pocssdoescatyw.ld reultsfo~r eEB iina(r) x rx L (r. r')= f2-.a (r) x(V x r(r, r'))
since the LiWt i (A&4) eu ooy if the integra-im is over for z 'M 0 (A.15)the entim surfsa of the ball. Theorem A.l ren ins vaid if
- is unbounded provided that a duifies the Silver-Muller d

r'itibon COdiwxC - (V x a(r)) x X(r.r') = 26- (V x a(r)) x r(r.r')
linr x Vxa(r)-rtkra(r)- 0 uniformly in-. (A.7) O " (A.16)

We ote dut the dvac Green's functon 1(r. r') inrduced Using the defniioo of the dyadics 1r and L2 equations (A.3)in (3.5) is gi•ev by and (A.12) may be combined to yield the representation
r(r.r')=r';'(r.r') I' 2 4 (r.r') a-r(3+(r,r') (A.8) 's at'r) x (V x r! (r.r'l)). V xa(ri) I• r.r')lda

Shence. (A.3) may be used to obtain - &kV x tr). r' 6 1.r, g V
"faf. -a(r) x (V x :(r. r')) +- (V x x(r)) x :(r.r] .k ; Wx ar,,..r i 'r, r: E V

47k' xa(r'), r' E V -O.r iftr',t (A.17)
o=0. -'0V. (A.9) If we choose V to be the enre upper-4 " spwe. requre

* Identifying V with D. the " ts of die scattering domain that A satisfy the Silver-M~lea, ridiation conditions in it and
lying below the xy plane d take into a*count the boundary conditions (A.I14) satisfied by
ayfirst with E and then the indented screen problem. add the dyadics. we see that (A.17) implies

Theorem.4.2 If E and H sati6fy Maxwell's equations f -a(rj x ýV x 1:, r'))do ikV' x > 0
in D and fi x E = 0 on S thenJx Si"t~r x•. •.~rr'•• = ak(V• x a~r)),.' E DSx E(r) -V x£ r(r, r')do + ikZ ri x H(r) .1(r.r')d(Xus 

(A. 18)
-0. x'>fl [•
ac -k'ZH(r ), r' e D (A.10)xar)) ,. (r.r')d= ikV'xa(r',: >0andi(V x a(r,)).. r' E D

f,6 5f •)-7 sr)s-iYj, A ~)-1(,r)a In particular, choosing a to be X' in (A. 18) and H' in (A. 19)4, = 0. Z' >0 we find. since i. x E = 0 on ac,

1) 2•E r ) ri x D~r (A r r r) a = 2 H ' r))zwhere ii = i on a. Observe that these representations involve 2•• ~ ) ~ .rl~ 2H(',z
not only the electric current densities on a and S bur also the = 2Z D

"magnetic current density " on a. To obtain representations forE' and H" when z:' > 0 we proceed as follows. (A.20)
By replacing z' by -z' in (A.3) we obtain and

fa~~~~r)~~ x 7x1×)r ,)+( ~) E(r). -1(r. r')da -IkS*(rW). z' > 0
x (')(Ir. r')Ids ikictij. V' x a(r',), r', E V -"zkE,"(r,), r' E D.=0. r'• (A.r12) (A.2 1)

S. ... .: .-€,I
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To obtain (A.20) and (A.21) we have used Maxwell's equa- We reczll that Df is the upper half space excluding the
tions and the simplifications in (A.15) and (A.16). Note that image of D and S. In arriving at this theorem we have used
we may write E or E' in the integrals since 2 x El = 0 the boundary conditions satisfied by E,rI, and L2 as well as
on or. This establishes the representations (3.29) and (3.30). (A.15) and (A.16) to simplify expressions containing .1f and
Combining the representations (A.20) and (A.21) with those !:2 on or. Using the definition of ' we see that (A.27) es-
obtained earlier, (A.10) and (A.11), to eliminate the terms tablishes the representation (3.17). Additional representations
involving 2 x E we find that may be obtained by choosing a to be H in (A. 17).

,
2  Combining (A.20) with (A.26) to eliminate the term involv-

ikZ f ii H(r) .r(r,r')ds = -- Z (r'),z' > 0 ing 2 x E on a leads to
"usT k2 (rrk. = Hs(', 'ED

- -k 2ZH(r') - .- ZH (r'), r' ED (A.22) ik j( x H(r)).r 1 (r,r')ds = H'(r'),r' e Df

and H"H(r') +Hi(rý),r' ED

V =H(r') +Hi(r),r' E D

,i x H(r). V x r(r,r')ds T YE'(r'),z' > 0 (A.28)

- k 2YE(r') - T•YE'-(r'), r' E D. (A.23) thus establishing the representation (3.18). Taking the curl of
both sides of (A.28) we obtain

Introducing the definition of r and the currents J. = i x H

on a and Js = fi x H on S we obtain the first of two main 6i x H(r) . V x • 2 (r.r')da = k2yE'(r'),r' E D1
representations which we state as 2'

Theorem A.3 = k2YE(r) -2kYE 1 (r'),r' ED
If (E. H) solve the indented screen problem. then = k2 YE(r') - k2'YE'(r'), r' E D

J, (r) x VG(r.r')do+ ,• Js(r) x VG(rr')ds (A.29)

1 which establishes (3.19). In carrying out the computation
- H(r'),z' > 0 leading to (A.29) wa used the facts that

2 =H~')•Hr').rEDaGD = OGD OGD = GD OGD _ 8Gy

(A.24) axz ax ' al " 8z' Oz
and

and
[J.(r) VVG(r.r') + k'J,(r)G(r.r')]da OG.V ON c9Gx = G.V OGN _ G-

1:1, ~(r) - rVG(r. r') •- k'Js-(r)G(r. r')]ds ax, ax ay1, '9y ' •Z'

(A.30) •
: kY=-- 2 E'(r').z' >0 to show that

2

= -ikYE(r') zkYE(r),r' ED. V' x [a- r1 (r. r')] = A • V x r 2 (r.r') (A.31)
(A.25)Th2 (A ) pfor any vector A constant with respect to the primed variables.

The first part of this theorem establishes the representation The right-hand sides of (A.28) and (A.2r) are not con-
(3.16). To obtain the second vital representation choose a to tinuous for r' on S,, the unage of S. Ho .cver. because of
be E and V to be D in (A.17) and successively take 1 to be the singularities in 1:1 and 12 the integrus on the left have
r: and then r2 which then yields jumnps, not only when r' - S but also when r' - S. -

in -oremA.4 if (Ed H) satisy Mar0eli's oquatiohs for then r, - S. It is these jumps that allow us to deriveinrDand x E = 0on, then - the integral equations. The integral equations follow from a
2f(i x E(r)). 'V x r(r.r')dc + 6kZf x H(r) .r(rr')ds straightforward application of nre following(r. -+ s T.77orem A.5 (MO'lei (22)) Let B denote the

- -k'ZH(r'). r' E D smooth boundary of a domain V and 6 point away from V.

V -k2 ZH,(r;),r' E D IfJ is continuous on B then
0. r' E D f (A.26) Urn fi' x J(r) x 'G(r.r')ds

and °r'- -

2 11xH(r) [(r.r')do- - fix H(r) 2 '(r.r')d, =;y (r,- f' x J(r) x VG(r.r')da
J. (A.32)

tkH(r').r' E D
= -*kH,(r:), r: E D where r' - H- means r' - B from the extenor of V ana

= 0. r' E Df. (A.27) r' -- B- means r' - B from the interior of V.

=• "" -- __ __ ___ __ ___ __ _____ __ _......___ __
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1. Introduction

In this paper we show how a novel iterative technique can be used to reconstruct complex
indices of refraction of two-dimensional objects from measurements of the field (acoustic or
electromagnetic) scattered when the object is illuminated by known sources. The method is an
extension of the ideas presented in [9,101. Essentially the method involves casting the inverse
problem as an optimization problem in which the cost functional consists of two terms, one is
the defect in matching measured data with the field due to a particular index of refraction and
the second is the state equation, an integral equation in which the index of refraction appears
and which the field must satisfy. A modified gradient method is employed to solve the
optimization problem. By modified gradient we mean that the update of the index of refraction
takes place in the direction of the gradient of one term of the cost functional, while the update
of the field involves a successive over-relaxation method.

Successive over-relaxation is one of a number of iterative methods for solving operator
equations which emerge as special cases of general technique based on least-square error
minimization, see [7,11,221. In a recent paper [8], the application of the over-relaxation method
to the integral equation arising in scattering from an inhomogeneous object was presented.
There it was shown that the iterative solution of the direct problem converged for much larger
indices of refraction than those for which the Born series converged.

The Born approximation or Born series is well known as a tool in attempts to solve inverse
problems wherein one tries to determine an unknown index of refraction from measurements
of a scattered field on some measurement surface exterior to the scattering object. The essence
of this approach involves making an initial guess of the field in the object, the Born
approximation, then determining the index of refraction to minimize the discrepancy between
the far field and the measured data, next solvir' Ehe direct problem with this newly determined
index of refraction in order to updatc tý . neld in the object and then determining a new index
of refraction to minimize the discr'pancy in the far field. This iterative process is continued
until the defect in matching the measured data is reduced to an acceptable level. Essentially
the updating involves a linearization of the highly nonlinear dependence of the field on the
index of refraction. In general there are no rigorous convergence results but the scheme has
proven to be of practical utility, see e.g., [2.5,12.17,19].

Our approach. inspired by the success of the over-relaxation method in solving the direct
problem. avoids the necessity of solving a direct problem at each step of the iteration. Instead
the field update directions are chosen as in the successive over-relaxation method to be the
residual error in the integral equation while the index update involves the gradient of the
defect. This involves the introduction of two relaxation parameters which must be determined
at each step. They are found by simultaneously minimizing the residual errors in the field
equation and in matching the measured data. This procedure retains the nonlinear relation
between the two unknowns.

In the next section we introduce some notation, formulate the problem more precisely, and
present a little more detail on previous approaches to the inverse problem. Section 3 presents a
brief summary of the relevant over-relaxation results for the direct problem. The new algorithm
for solving the inverse problem is given in Section 4 and the results of some numerical
experiments using this algorithm in recovering the index of refraction of a two-dimensional
object are presented in Section 5. These results are promising in that they successfully
reconstruct indices of refraction of fairly general shape.
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2. Notation aud problem statement

Let D denote the interior of a bounded domain in 1R2, with piecewise smooth boundary. A
precise mathematical characterization of the assumed smoothness is given in [8]. Erect a
Cartesian coordinate system with origin in D and denote points in R2 as p = (XP, y,) and
q = (x,, yq). The subscripts will be omitted when there is no danger of confusion.

We assume that the penetrable inhomogeneous object D is irradiated successively by a
number of known incident fields u', i = 1 ... L I. For each excitation, the direct scattering
problem is modelled by the following transmission problem. For a given incident field u~nc(p)
determine ul in D and u• in ext 1) (exterior of D) suc'u that

-, -- i ,(1)

[,v2 + kln2(p)]ui(p)- 0, almost everywhere in D, (2)

[V +kV] ]u'(p) - 0, in ext D, (3)

u,, on aD, (4)
au• au,au - on aD, 

(5)
fv auw 1 -

rim r 1 2I -- iku'k -0, uniformly in t ,p (6)
a- r ' Ii'

and u, and Vui are continuous in D, but V2ui may not be if the complex index of refraction
n(p) is discontinuous. Here u n is defined in R2 and is analytic in D, k is assumed constant
with Irn(k) r 0 and the complex index of refraction n(p) is piecewise H61der continuous in D.
Further a/av denotes the derivative in the outward direction normal to aD, and r :- p I
.= vx 2 + y 2 .

Introduce the complex contrast X by

),(p) - n 2(p) - 1. (7)
Then the direct scattering problem may be reformulated as the domain integral equation

u1(p) - u•nr(p) + k2f x(q)ui(q)y(p, q) du, p -: D, i 1,..., 1, (8)

whereI 1(p, q) !i Ol( (9)
If ui solves (8), then the scattered field is obtained from the representation

uF4(p) -k2f X(q)u(q)-y(p, q) diq, pGext D, i 1,...,I. (10)

Introduce the operator notation
Ge )ui(p) Of V~o(q)u,(q)-y(p, q) du,, p D, (11)

and
LX)Ui .Ui GetXu,. (12)

¶~r~:~
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If X is restricted to lie in L,,(D) (which includes piecewise continuous functions), then (8),
which is simply

zcu,(p) _Uinc(p), p •D,/i 1-- I..,I (13)

may be considered as an equation for u,(p) e L2(D) where the norm and inner product are
~1/2

lItuJllD= 2u(P) 1 dv,,
ID (14)

Assume that u• is measured on some subset S C ext D. S may be a surface enclosing D or
a set of discrete points exterior to D. Define a norm and inner product on S by

gi, 11 {s - (I gi(p) 12 ds,)}/2, if S is a surface,

{E_ Ig(P.)12) if S consists of J discrete points pi,
]-1 (15)

(gi.a, gi.2)s fg•. 1(p)g1.2(p) ds,, if S is a surface,
.1

,-i9i- E 9,. 2(Pi)•,•p, if S - {PAj-,_.
i: ~j- I

Denote by gi(p), p r S, the measured data for each excitation i, i 1,I.., 1, and introduce the
operator notation (compare (11))

K(.,)X(p) = k2 f x(q)u,(q)y(p, q) dvq, p r S; (16)

in what follows it is convenient to distinguish between the operator as a mapping of Xui to D
and to S, respectively.

The profile inversion problem is that of finding X for given g,, or solving the equation
K(.,•X(p,)--i(p,), pe, -, 1,-., 1, (17)1

for X subject to the additional condition that u, and X satisfy (13) in D. The ill-posed nature of
this problem is well known [3]. A frequent approach is to attempt to find X and ui to minimize

ii. 11g- K(,1,)x II s. Since ui depends on X through (13) in a highly nonlinear way, most
attacks on this problem embody two principles; first a linearization of the nonlinear depen-
dence and second a regularization of the optimization problem. The process is usually carried
out iteratively in the following way: if u,- is found, determine x by minimizing E.. II -
K(.,_ OXU . 11 s using some kind of regularization and update uz ,- by solving the equatior.
I L(•u ••i -u.* The starting value is usually taken to be u.0 - ul" (the Born approximation).
This essentially follows the idea of [16] and has been utilized in various forms by maiy w
investigators [18,24,25].

Our approach follows this same line of reasoning and incorporates the idea of [25] in using
the state equation itself as the regularizer. A novel feature of our approach is that we avoid

-_i~WAW_ II
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solving a forward problem (13) at each step of the iteration by generalizing the successive
over-relaxation method [11,22] to solve the direct problem. This avoids the linearization implicit
in other approaches [18,24,25].

Specifically we will seek ui and X simultaneously to minimize the functional

41 1Uini U-~eL(X)ui IID 11 gi - K(.t)X

i-I i-I

Most approaches treat the regularizer as a penalty term with a coefficient which often must
be taken to be very small. We choose to put the two terms in (18) on equal footing and
normalize them in the sense that they are both equal to one when u, - 0, i = L

The iterative solution of the direct problem is summarized in the next section and provides
the motivation of our choice of correction direction for the field in the inversion algorithm.

3. The direct problem

Details of a number of iterative procedures for solving the operator equation L.,)u- - u~nC

are presented in [7,11,22]. For our problem of many excitations they consist of constructing
sequences of functions {u1,j,_..0 and associated residuals (ri.nn. 0 for each i whereUinc (-g

r i :=ui, -L(Xui, n O, i = .... ,I. --_ (19)

In the stationary over-relaxation method the sequence of functions {ul.jn is defined as follows
for each i:

Ui'o arbitrary, u1. AUZ.n_ 1 +tri.n- , n 1, (20)

whereas the correspondirg successive over-relaxation algorithm is

ui.0 arbitrary, Ui.n Ui~ n + tnrinr1 , n;; 1,II
an (21)". IL(X)ri,. _I 112

i-i

The difference in the two methods lies in the relaxation parameter. In the stationary method
there is a single, possibly complex, parameter a which must be chosen in some manner while in
the successive over-relaxation method there is a new a, at each step which is completely
specified by the requirement that it be chosen to minimize Ei. - II.. II D . It should be noted
that what we call stationary and successive over-relaxation methods are simple examples of
what [13] calls generalized over-relaxation methods. These are operator analogues of Richard-
son's iterative method in matrix theory (see, e.g., [23, p.141]) and are descent methods with
fixed or variable relaxation parameters or direction coefficients (see, e.g., [6, pp. 61ff.]).

For one excitatiod it was shown [8] that if Im(;) ;b 0, Im(k) ;• 0 and X is piecewise H13lder
continuous on D, .then there exists an a such that (13) may be solved by the stationary

"MMi
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procedure. That is, for each i, the sequence ui., generated by (20) converges in 11 I, to the
solution of (13). No recipe for finding the best choice of a is available but numerical
experiments showed that by choosing a to minimize 11 ri,3 II D, which leads to the explicit choice
a - ( ri,0 , .•ý()rb.o/DI 11 L(,)ri0o 11 D, resulted in an iterative method with a wider range of conver-
gence than the Born series which is the stationary over-relaxation method with a = 1.

While a convergence proof for the successive over-relaxation method is not available for the
integral equation under consideration, numerical experiments indicate not only convergence,
but also more rapid convergence than in the stationary case. In the stationary case it is shown
[8] that it is always possible to choose a relaxation parameter so that the spectral radias of
I - aLc, is less than one, so that the iteration converges. Numerical experiments [11] have
shown that the successive over-relaxation method clearly converges for a range of contrasts
where the Born series diverges and converges faster than the Born series when the latter
converges.

The success of the successive over-relaxation method in the direct problem suggests the
generalization to the inverse problem described in the next section.

4. The inversion algorithm

Here we propose an iterative inversion algorithm which incorporates the ideas of successive
over-relaxation with the choice of relaxation parameters determined by minimizing residual
error. Of course now there is an unknown function X and a vector function u,, i - 1,..., I,
while two error terms are incorporated in the functional (18). This generalizes the results of
[9,10] to multiple sources and higher dimension.

Bearing in mind the fact that the data may consist of a discrete number of measurements
from which the unique reconstruction of a completely arbitrary function wuuld be impossible,
we recast the problem somewhat. Introduce two families of linearly independent functions

,,(q), qG D),'-.1 and {(0.p), p e SIJý . Rather than to attempt to reconstruct X we limit
ourselves to reconstruct the projection of X' on the linear span of an approach also
used before [24]. Thus we assume

M

x(q) - E X 0r(q). (22)
rn-I

The choice of the functions (6.m is somewhat arbitrary but with an eye toward an eventual
convergence proof, not presented here, the families {'km}f -, should be ultimately dense (as
M-- •) in the space in which the function X is sought. Further, (4'1 should be piecewise
H6lder continuous on D in order to be consistent with the assumptions on X. In addition these
functions should be chosen to incorporate any a priori information about X that is available. In
the absence of any such information the 0m, may be chosen to be polynomials or finite-element
functions. The choice of the functions 0, is also arbitrary, although it would be convenient if
they were mutually orthogonal on S. If the surface S is a circle or sphere, an obvious choice
would be circular or spherical harmonics, in which case the expansion coefficients of the data
would be (g,, kj)s. In the event that the data are available only at a discrete number ol sample
points, p1 , j 1= . .. , J, a useful choice is Wl(p) -(p -p1 ), in which case the inner product
(g,,4i)s is interpreted .as the linear functional (g,, 41)s =g,(p).
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We propose- to find the projection of X. on the linear span {'km}f , which minimizes the error
in the projection of gi - Kc=,)X on the linear span of {eP}/..r.In order to do this we express
functions on S as vectors wbose components are projections onto 1k.. First define the
coefficients in (22) as an M-component vector

X = (X1I X2,...,X' M)". (23)
Next introduce this vector X into (11) with the definition

M
G(X)ui:"= Xn ,,G •.u!, (24)

In-1
and in addition

wU. G (25)

Now define J-component vectors from functions on S so that the measured data g1(p) becomes
the data vector

gi 9 (g, 41)s, (g,, 1'0 2)s... (ig, 0J)s)", (26)
and in addition

K(.,)_- - ((K(.,)X" -, 0 s, <K(",),v" -, 0' ... (Kcu,)X" - , ý1)s)T, (27)

in which " - X.. iXm'm Define the residuals on D and on S as
ri= ui- u pi =gi K(u,)X. (28)

We then propose the iterative construction of sequences {ui,J and {xc) as follows:
inc

Uio = ui ,X0 = 0, (other starting choices may be made)
ui,, "ui..- + a.ri..-, XR =Xl-I -4-I3.d., (29)

r.n = U inc - -L Z .U i~ , p i~n " g i - -K ~ u .) .

where a,, and 3,, are in general complex constants which are chosen at each step to minimize
I I

2 2

F.= • - + 7 -z - (30)

i-1 i-I

Here, the residual errors can recursively be written as
rim = ri.- - t,.L(x._,)rin- 1 + 1,GG(d.)Uin_1 + Or./flGcd)rl,._ .,
pi Pi.n - I- , - n.(r,)xn 1  PnK(u,... I)d - c•rl 3 nK(ri,. .)d..

Note that for each n, the vector X, has M components, while pi., and g, have J components
so that by the norm and inner product on S are meant

J

N i-i(32)
(Ig,, t! 1,) = j• Kg,, ')s 12

(9,.11 gi.2>S E (g1.11 dl~i)s(,.21 qlJ~s"

j-1

Implicit in this definition is the assumption that the functions Vi1 are orthogonal on S.

i" i i ii i F"• i U~i......• •I ii I I
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In (29) the function d, which is the updating direction for X, has to be specified. We
choose d, to be the gradient of the error in matching the measured data at the previous,
(n - 1)st, step. Explicitly, treating X and j as independent variables, we define the M-compo-
nent complex-valued vector d,, to be

d a a a I -

Carrying out the differentiation we find

"", • (P.n-1 kc,.._d•M s ,(34)
i-1

where the vector k(.,)4,, is defined as

k•,,'6,, " ( (K<u,,,0m , #x) s, ( Kcf•, , )s .. ,( 0,m7•,•jsr (35)

and the operator K(,,,) is defined in (16).
The minimization of the quantity F,& of (30), using (31), leads to a nonlinear problem for the

variables a,, and P,, at each step, which we solve using the Fletcher-Reeves-Polak-Ribiere
conjugate gradient method [14] to find values of a,, and /3,, which produce a (local) minimum.
The starting values of a, and 3,, are chosen to be equal to zero. Other solutions of this
nonlinear algebraic equation have not been investigated.

In the next section we will demonstrate the performance of the present scheme for some
representative examples.

5. Numerical results

In this section we present the results of a number of numerical examples. In these examples,
the domain D is taken to be a square and this square is subdivided into subsquares of equal
sizes. In fact, the domain D need not actually be a square. Other shapes can beachi-ved by
choosing the contrast X to be zero over portions of the square and this is illustrated in our
examples. Hence the inversion algorithm not only reconstructs the index of refraction, but also
locates the scatterer within this square. The integrals in the operator expressions are replaced
by a summation of the integrals over the subsquares. Over each subsquare the field function
and the contrast function are assumed to be constant (the functions 0,, are pulse functions).
Consistent with this approximation, we replace the integration over each subsquare by a polar
integration over a circular domain of equal surface area. Then, the integrations over the
subdomains can be carried out analytically [15]. The operator expressions containing the L
operator or the G operator have a convolution structure and they can then be computed very
efficiently with a Fast Fourier Techniqiie [21].
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The measurement domain S is taken to be a set of points (p,) equally spaced on a circlecircumscribing the square; so the inner products of a function v on S with it,, must be
Iinterpreted as

( u , ' s " ( P j ) "

The sources u' will be taken to be line sources located at these same points (p)•, so that in
our examples I - J.

For each configuration we.first present convergence results for the direct problem using both
the successive over-relaxation method and the Born series. We shall compare the R.M.S. error

I

Err,, (36)n
u-i

as a function of the number of iterations n. These results will be used to support the conjecture
that effectiveness of the inversion algorithm depends on the rapidity of convergence of the
over-relaxation method for the direct problem and not on the convergence of the Born series.

We then present the results of the inveision algorithm. The measured data were simulated
by solving the direct scattering problem with a conjugate gradient method (CGFFT [21]) while
imposing an error criterion with an R.M.S. error Err, < 10-10. The reconstructed contrasts are
presented pictorially, and in addition numerical convergence is shown by plotting the profile
error

l x -xI U
Err(x.) II1+xII (37)

and the R.M.S. error F,11 2 , defined in (30).

Configuration I

As first example we consider a square object with dimensions of A x A, where A - 2 -.,/k is
the free-space wavelength. The contrast profile is given by

where the origin of the coordinate system is at the center of the object. The object is subdivided
into 19 x 19 subsquares. A surface plot of this profile over the discretized object domain is
presented ini Fig. 1. Note that the imaginary part of the complex profile is equal to zero. On a
circle of diameter 2A around the object we locate 10 (line) receivers at equally spaced points,
while the object is irradiated by a (line) source that is located successively at each receiver
location, hence I - J = 10.

We first solve the direct problem for this configuration by using the successive over-relaxa-
tion method of (21) and compare the convergence of this method with that of the Born series
which is obtained from the stationary over-.re!axation method (20) with a - 1. The errors are
plotted as a function of the number of iterations in Fig. 2. Although the Born series still seems
to converge, at a very slow rate, the successive over-relaxation method converges much faster.

I
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Fig. 1. The contrast profile for Configuration 1. the Fig. . The numerical convergence of Born scrien and
dimensions are A X A. the peak value of th contruat the suoesswe over-relaation method in the direct

is i. problem for Configuration I.

We secondly solve the inverse proolem. The numerical convergence of the profile error
Err(X.) and the R.M.S. error F,,12 is plhted in Fig. 3. It should be remarked that in practice we
are never able to measure the profile error. This mtans that the error quantity F.1l/2 is the only
available measure of convergence. We observe that with as few as 15 iterations the errors are
decreased to values of about 1%. Some surface plots of the reconstructed profiles are
presented in Fig. 4 for various values of n. the number of iterations. Comparison with the
original profile in Fig. 1 indicates the success of the reconstructions. Note that the imaginary
part of the complex profile function converges to zero as it should. Additional numerical
experiments con.firm that our inversion algorithm reconstructs smooth profiles very accurately
as long as the successive over-relaxation method for solving the direct problem converges
reasonably rapidly.

Configuration 11

As second example we consider an object with discontinuous profile. We assume that the
object consists of two distinct square homogeneous objects contained inside a square domain
with dimensions of d x d. The two objects have diameter of approximately Id and the distance
between them is also Id. The contrast or profile function in the larger square has step
discontinuities; X - 0 outside the objects and X,- 0.8 inside the objects. This example is
equivalent to that in (1]. 'However, we use a finer discretization by subdividing the surrounding
square into 29 x 29 subsquares. A surface plot of this profile over the discretized domain is
presented in Fig. 7. Note that the imaginary part of the complex profile is again equal to zero.
A circle of diameter 2d around the object is equally partitioned by J points. These points serve
as receiver locations, while the object is irradiated by a source that is located successively at
ea-h receiver location, here 1 - J. We consider three cases, viz. (i) d - A and I - J - 10, (ii)
d= 2A and I-J- 20, (iii) d-3,3 and I-J-30.

We first solve the direct problem for this configuration by using the successive over-relaxa-
tion method of (21) and compare the convergence of this method with that of the Born series.
The numerical results are presented in Fig. 5. We observe that in the case of d - 3A the Born
series diverges, while the successive over-relaxation method still converges rapidly.
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Fig. 3. The numnerical convergence of the profile recon- Fig. 4. The reconstructed profiles for Configuration 1.
struction for Configuration 1.

We secondly solve the inverse problem. The numerical convergence of both the profile error
En-(,.) and the R.M.S. error F,'2 are plotted in Fig. 6. We observe that for the case d/Ak - 1
the proffile error remains high as the number of iterations increases. This is also obvious from
the surface plots of the reconstructeed prflsshown in Alig. IV for various values of n. the
number of iterations. It appears that the wavelength of the incident waves is too large to
resolve the discontinuities in the profile. Our scheme attempts to reconstruct a band-limnited
version of the real profile. Ibis observation is in agreement with that of [18, p.3 10], which states
that the expected reslution, using the Rayleigh criterion, is about half a wavelength. We have
also performed an additional experiment with 30 transrnit-L~rs and 30 receivers (U - J - 30), but
we did not obtain higher resolution. Therefore we have performed some more expe.riments with
smaller wavelengths, viz. d/A - 2 and d/A = 3. The reconstructed profiles are presented in
Figs. 9 and 10, respectively. We indeed see that for decreasing wavelengths a higher resolufion
is obtained; however, we observe a phenomenon similar to the Gibbs phenomenon in the
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Fig. 5. The numerical convergece~ of Born series and Fig. 6. The nuimerical convergence of the profile recon-
the successive over-rela;%ation method in the direct struction for Configuration 11. for 4/A - 1. 2 end 3.

problem for Configuration 11, for d/A -1. 2 and 3.

approximation of a discontinuous function by band-limited functions: there oc-cur oscillations
near the discontinuities and they increase for smaller wavelengths and they accumnulate close to
the discon 'tinuities. 'This confirms that our inversion algorithm is strictly band-limnitcd arid the
resolution is determined by the wavelength of the incident waves.

Data with noise

For our latter example with d./A - 3 we invesaigate dhe inf"luencz Of n---' data, We h1ave
added to the data a noise signal with maximum amplitude of 10% of the maximum amplitude
of the data at all data points i - 1,.,1, j - 1..,J. It is observed that this high noise level has
only a minor influence on the reconstruction process. In Fig. 11 we observe that the profile
error Err(,,) in the case of data with 10% noise behaves almost the same as that without noise,
while the A.M.S. error F',"' in the case of noisy data is at a very high level (as it should be).
Obviously, in the case of noisy data, the R.M.S. error F.,12 is not a realistic measure of
convergence. In Fig. 12 the plots of the reconstructed profiles using noisy data are presented.
Comparing Fig. 12 with Fig. 10, we observe the influence of the noise only after large number
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Fig. 7. The contrast profile for Configuration 11; the Fig. 3. The reconstructed profiles for Configuration 11.
dimensions of the square domain are d X d, the peak when d - A.

value Of the Contrast 4i 0.8.

of iterations. Since the imaginary parc of the reconstructed profile has to vanish. the noise is
clearly visible in the reconstructed imaginary part of the profile. We believe that the band-limited
properties of our inversion scheme make the scheme very robust and not very sensitive to the
presence of noise in the data.

Configuration XI

As last ex~ample we consider an object that has a complex contrast with a nonzero imaginary
part. We assume the profile function of the object to be defined-inside a square domain with
dimensions of 3A X 3A. The profile distribution is given as follows: inside a square domain of
about A X A the contrast is X2 - 0.6 + 0.2i; outside this domain and inside a square domain of
about 2.k x 2A the cpntrast is X, - 0.3 + 0.4i; outside the latter domain the contrast vanishes,
so that the scattering object is indeed smaller than the square with side 3A.
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Fig. 9. The reconstructed profiles for Configuration II, Fig. 10. The reconstructed p-ofilcs for Configuration
when d - 2A. II. when d - 3A.

The square is subdivided into 29 x 29 subsquares. On a circle of diameter 6A around the
object 30 receivers are located at equally spaced points, while the object is irradiated by a
source that is located successively at each receiver location, hence I - J - 30.

As in the previous examples we £irst solve the direct problem for this configuration by using
the successive over-relaxation method of (21) and compare the convergence of this method with
that of the Born series. The numerical results are presented in Fig. 13. We observe that the
Born series diverges while the successive over-rclaxation method converges rapidly.

We secondly solve the inverse problem. The numerical convergence of the profile error
Err(,.) and the R.M.S. 'error F,,"2 is plotted in Fig. 14 (solid lines) and the reconstructed
profiles are given in Fig. 15. A few hundred iterations are needed for reasonable reconstruc-
tions. Again it appears that the algorithm tends to reconstruct a band-limited profile. because
the profile error remains at a much higher level than the R.M.S. error.
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Fig. 1t. The numerical convergence of the profile re- Fig, 12. The reconstructed profiles for Configuration •
construction for Configuration 11, when d - 3A, from 11, when d - 3A. from data with 10% noise.

data with 10% noise and without noise, respectvely.

Band-linzited profile

In order to investigate the phenomenon of band-limitation. we approximate the original
profile by a finite Fourier series

7 7 [j .-rx ) I (k ry )
x'i s"- E E X:k COSt ) COS- , (39)

where the origin of the coordinatehef the center of the object. The e Fourier coeffigcnts
con are easily determined from the original disfomdnuous profile shown in Fig. 15. This new

dprofile i taken to be a new oiginal profile and is shownl in Fig. 6. Note that this band-limited
profile closely resembles thi recnstructed profile of Fig. 15 (n -512). Subsequently, we
simulated measured data by solving the forv'ard problem for -his given band-limited profile.
With these data wo he ouor inversion algorithm to reconstrcct this profile. The numerical

"poIlistkntbeanwoiiaprflard "i ishoniFi.6.Nt tha tis bad-imte
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Fig. 13. The numericAj convergence of Domn series and Fig. 14. The numerical convergence of the profile re-
the successive over-relaxation method in the direct construction for Configuration III.
problem ior Configuration III (discontinuous profile).

convergence of the errors are given in Fig. 14 (dotted lines). We observe that the R.M.S. error
F,,I/2 in the reconstruction of the original discontinuous profile is very close to that of the
band-limnited profile, but the profile error Err(,.) in the reconstructed band-limited profile
decreases at a much larger rate. The surface plots of the reconstructed profiles for this
band-limited case are presented in Fig. 16. Comparing Figs. 15 and 16 we see that the
reconstructed profiles are very similar. This supports the assertion that our inversion scheme
reconsntracts band-limited approximations of the actual profiles.

6. Conclusions

In [9,10] we proposed a new iterative scheme to reconstruct the constitutive parameters of a
bounded inhornogeneous object from scattering data. The scheme involved the simultaneous
minimization of the error in both the object domain and the measurement domain in an
iterative way. The method was formulated and tested in one-dimensional problems, scattering

Ul
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Fig. 15. The reconstructed profiles for Configuration III (discontinuous profile),

by a slab at a single frequency, in which the available data are severely limited (back and
forward scattering). This limitation on the number of data points essentially restricted the cla&s
of profiles we were able to reconstruct to constant and linear varying indices of refraction.

In the present paper we have extended the algorithm to two dimensions where the number
of data points which might be utilized is greatly increased, even at a fixed frequency, by varying
source and receiver location. The essential features of the algorithm are retained. It is still
based on a successive over-Y.-laxation method for solving the direct problem coupled with a
gradient scheme for minimizing the error in matching measured data. While the algorithm is
more complicated in that a number of different forward problems corresponding to a number
of different incident waves are included, the essential features are the same. It still avoids the
need for solving any forward problems at any stage of the iteration, instead the accuracy of the
reconstructed contrast and the associated field are increased gradually. A number of numerical
examples have been presented which indicate that the algorithm is very effective in reconstruct-
ing complex-valued spatially varying contrasts in cases where the successive over-relaxation
method produces rapidly convergent solutions of the direct problem, The fact that the success
of the reconstruction depends on successive over-relaxation rather than convergence of the
Born series means that it is applicable to a wider iange of contrasts and frequencies than other

[,. -- , ,i --- ---... ... -- . . - , - -i- .
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Fig. 16. The reconstructed profiles for Configuration III (band-limited profile).

Born-based inversion methods. The limits on the magnitude of the contrast that can be
reconstructed using this method are still to be explored. We expect that a necessary but not
sufficient constraint on the contrast is that the successive over-relaxation method must
effectively solve the forward or direct problem. However, if a more sophisticated forward solver
were incorporated into the algorithm, then even wider ranges contrasts and frequencies could
be accommodated, see e.g., [4]. This is one item for future research. Another way to possibly
enhance the effectiveness of the method is to build into the scheme the distorted Born iterative
method [1,20], but this has yet to be done.

The numerical examples support the contention that spatial variations much less than a
wavelength cannot be resolved. Moreover, the way in which the algorithm is constructed, it
attempts to reconstruct not the profile itself, but a projection of the profile onto a finite-dimen-
sional space. This effectively imposes a band-limitation on the reconstructed profiles, which is
confirmed by the numerical examples.

While we have indicated a number of limitations and possible avenues for future work, the
method as it stands appears to constitute an effective tool for profile reconstr'tction.
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An extended range-modified gradient technique for profile inversion
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A method for reconstructing the complex index of refractirwn of a bounded inhomogeneous object
from measured scattered field data is presetited. 'Me index and the unknown fields within the object
are simultaneously reconstructed in an iterxuive algorizhimi. The method is a refinement of earlier
work which incorporates a more effective way to updaw- the unknowns at each stage of the iteration.
Considerable effciency in the algorithm is achieved. S~urno numnerical exxamples ame given indiaating
the limits on the contrasts which can bercontutd Tbn.w Uniiu ithow that the r-ange of contrasts
that may L'e reconstructed is extended over that achievabl% 10th the carlicer work.

INTRODUCTON structioi.s. In thte present paper we describe a mnore
In previous work [Kleinman and Van den Berg, sophisticated choice of updating directions which

1992] we presented a novel method for solving th results in a mauch more efficient algorithmn, with an
inverse s;cattering problem of reconstructing the iteration count reduced by approximately a factor
index of refraction of an unknown scatterer from a of 4. With this more advanced algorithni we analyze
knowledge of the field scattered when the object is the limits of reconsu-uctibility in terms of both
illuminated successively by a numbe;r of different object size and the m~agnitude of refraction index in
excitations. The method was inspired by the suc- some two-dimensional examples, aud the res-'s of
cess of iterative solutions of the direct scattering this analysis are prcsented. Roughly, the upper limit
problem, and indeed, these iterative methods of reconstructibilit3' is found to be kdlXn,1.=. -7r

played a crucial role in the inversion algorithm. The where k is the wavenurnber, d is the object diameter
inethod consists of c-asting the inverse problem as and I~mxJ is the maximum absolute value of the
an optimnizauion problem in which the cost func- contrast x. In terms, of the index of refraction n, X
Liotial is the sum of two terms: one is the defect in n - 1. T"his problem of reconstruction of the index
matching measured field data with the firld sct-. of refraction hasq been attached by a number of
tered by a body with a particular index of refrac- different methods. The most notable numerical re-
tion. and the second is the -~rror in satisfying the sults are given by Chew and Wang [1990] and
equations of st-ate, a system of integral equations for Colton and Monkc [1992] for real refractive index.
the fleid due to each excitation. The index and tite an~d by Joachimowicz ei al. [1991] and Habashy et
fields are updated by a linear iterative method in al. [1992] for complex refractive index. Additional
which the updating directions are weighted by pa- references are given by Kleinman and Van den
raineters which are determined by miinimnizing the Berg [19921. Uniqueness for s he problem of recon-
cost functional. A variety of choicess f~ tl, - ~ ~ ~ seide fr~'-" "" ctee ii
in~g direction exists, and a relatively simple one has data has been proven by Isakov [1990] if the scat-
been made by Kleinman and Van den Berg [1992] tered field is known in all directions for plane wave
which sufficed to enable some remarkable recon- incidence from all directions at a single frequency, a

situation which is approximated in the present case.
In thids paper we will briefly review our inversion

Copyright 1993 by the American Geophysical Union. algorithm and refer the reader to Kleinman and Van
Paper number 93RS01076. den Berg [1992] for mnore details. Major emphasis
OW4-iS4650 3193R"10l765O8.00 will be placed upon the new choice of update
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directions and numerical experiments that probe FDi - L(x))uil2, (6)
the limits of applicability of the algorithm.

where the subscripts S and D are included in the
norm 1 I-1, and later the inner product (. • ) in L2

DESCRIPTION OF THE TWO-DIMENSIONAL PROBLEM indicates the domain of integration. Rather than

Assume that a two-dimensional inhomogeneous seek X to minimize the data error subject to the state

cbstacle D is irradiated successively by a number of error as a constraint, we combine these two error

known incident fields un', i = I, .-. , 1. For each measurements into one normalized cost functional:

excitation the direct scattering problem may be t
reformulated as the domain integral equation: F = wD- Lý,)ii2 + ws

Lpu•(p) - ui(p) - GDXui(p) =U", p E D. (1) (7)

where where

GDXUI(P) -k
2J G(p, oft(q)ui(q) dvq, p ED, (2) ijju1 IIIILS ~ I ~

and If the data f,. originate from an actual scattering

problem, then there exists X and ui in Li(D) for
G(p. q) = Ho(kIp - qJ). (3) which F vanishes. In practice, we approximate X

and ui in subspaces of L2 (D), and hence the guiding

Here ui is the total field corresponding to the principle is to seek X and ut s:,multaneously in a way

incident field u!'r, k is the wavenunber, x is the which mirimizes F.

complex contrast (. - n2 - 1, where n is the index
of refraction), and p and q are position vectors. G(p, INVERSION ALGORITHMI
q) is the free-space Green's function in two dimen-
sions. The inversion algorithm holds equally well in The basic idea underlying the inversion algorithm

three dimensions with appropriate choice of G(p, is to incorporate the ideas of a gradient type of

q). GD is an operator mapping L 2(D) (square inte- algorithm to iteratively solve the direct scattering

grable functions in D) into itself. If S is a surface problem together with a similar algorithm for solv-
enclosing D, then the scattered field u4;t on S is ing the ill-posed inverse problem. Specifically, we
given by GsXui, where Gs is the same operator propose the iterative construction of sequences
defined in (2), except the field point now lies on S. {ui} and {X,". as follows:

Hence Gs is an operator mapping L (D) into L2 (S).
We assume that uitt iE measured on S and denote uj. Uj-I + a.Vi.,,. Xn =- .n- + hndn,

by f(p), p EE S, the measured data for each excita- n 1, 2---. (9)
tion i, i = 1, - - •, I. The profile inversion problem is
that of finding X for given.f , or solving the equations The functions vt*, and d. are update directions for

the ffinctions ui, and X, respectively, while the
GsXUAp) =L'(p), pE S. i - 1,"-. I, (4) parameters a, and J3, are weights to be determined.

The residual errors at each step in the state equationfor X, subject to the additional condition that ui and
Xg satisfy (1) in D for each i. Thus there are two error

measurements involved; the first is the defect in ri. = u• - Li.. = f; - GsX",,u1 3  (10)
matching the measured data in L 2(S); namely,

and the value of the cost functional at the nth step is
Fssi = I1f" - GsXuill• (5)

and the second is the error in the state equation in F,= ' !r;l, w IIp;.lls. (11)
L2(D) ,-

L _.. .
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Following Kleinman and Van den Berg, [1992] the ui,0 f= ulC. The update direction for the field was
values of the parameters a,, and .3, are determined directly adapted from thie successive overrelaxation
by requiring F, to be a minimum. This leads to two method for solving the direct problem with known
nonlinear complexly valued algebraic equations contrast [Kleinman and Van den Berg, 1991] to be
which we write implicitly as vi., - rin.1 , and the update direction for the

contrast was chosen to be the gradient of the error
I in the measured data at the previous, (n - l)st,

WD (r' -LCx-,)vin + InGDdnV1.n)o step. In the present work we refine these choices

considerably. As the result of many numerical ex-
periments it was found that substantial advantage

(12) could be gained by first reconstructing a best pos-
sible constant contrast, even when the contrast in
reality was variable. Thus the algorithm was split
into two stages, or more precisely, the algorithm

D r d I+ a GD dnln) was run twice, first to determine the constantXi ,
(r-,,t ',. using dn, = I, and the associated fields uP'"', then

using these initial values in tht algorithm to obtain
the final values of xn - d u,,. The update directions

- w (Ps,;, Gsduui.R-i + aGsdqvg.n)s = O, (13) were ci.vsen in different ways depending on how
i-I rapidly corrections were occurring, the idea being

that simpler directions should be used when possi-
where the residuals satisfy the recursive relations ble. This resulted in significant reductions in com-

r *.=ri I -- anL( .. t)vi,, + putational time.
Specifically, we proceed as follows. Define the

a anpnG~dnvjn, (14) normalized change in the field by
I12. - 112

pi= .- piq - '~nGsXn_1v.nV. -pdGsdn,,,~ uj,,_ .I2' ~ I1ui .n-12 -112 (16)

- a,1p.Gsddvitn. (15) i-I . t- D

Substitution of these expressions in (12) and (13) To determine the initial values, we set an arbitrary
results in two equations involving terms determined switching criterion s and run the algorithm of (9)
at the (n - 1)st step, the directions d, and vi,, and with "irtal = 0 U initial = un, d,, = 1, and vi, =
the two parameters a, and 3&. Once the directions r,,, , '0 t i,0 wir,n-I until e,_I < E, then switch the definition of
d, and vi,, are chosen, we have nonlinear algebraic i to
equations in a,, and J3, and the solution of these
equations is accomplished using the Fletcher-
Reeves-Polak-Ribi~re conjugate gradient method (' (g',, g, -• &- )D
[Press et al., 1986]. '1'he starting value for a,, is
obtained by taking 03 - and minimizing F, while vi.,, = gi, ÷'+yv,,.,,- i Y
the starting value for /,, is found by setting a, ( 0 II-.-Il0,
and again minimizing F,. This procedure retains the
nonfincar character of the problem at each step in (17)
contrast with other iterative treatments that linear-
ize the problem at every stage [e.g., Roger, 1981]. with the gradient
The essential ingredients remaining are the initial
choices and the update directions. gv,, = wuDri..- - +-Dr1 .- I) + S,-zspi.-.

INITIAL GUESS AND CORRECTION DIRECTIONS (18)

In our previous treatment of this problem [Klein- where the overbar denotes complex conjugate, and
man and Van den Berg, 1992] we chose X = 0 and 6 is a map from L 2(S) to L 2(D). The choice of the

V
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direction vi., in (17) and (18) is the Polak-Ribi~re rapidity of convergence of the overrelaxatior,
conjugate gradient direction (Brodlie, 19771, assum- method for solving the direct problem. In the in-
ing the contrast does not change. Continue this verse problem, such information may not be avail-
algorithm until we again achieve s.-. < s. The able, in which case, tests may have to be run using
resulting values are taken as ui" and X"iEw. At both choices for the field updates.
each step the constants a, and 8,. are determined as
described above. In our computations we choose MRICAL EXAMPLES
r = 0.01; however, this is arbitrary, and other
choices could be made. No attempt was made to In actual numerical examples a discrete form of
find the optimal e, one that minimizes the number of the algorithm was used. In these examples it was
iterations. assumed that the unknown scatterer was located

With these initial choices we run the algorithm of entirely within a test square of known dimension,
(9) with vi, as in (17) and (18), and d, is taken in although knowledge of the precise location within
one of the two ways: if rn. I; e, then d4 is taken to the test square was not assumed. This test square
be the gradient dirccdon assuming that the fields do was partitioned into J 2 equal-sized subsquares, and
not change; that is, the integrals over the domain D in the algorithm

were all carried over this test square. The position
- of the actual scatterer is determined as the support

9.d - -WD •_• -IO-Dri.,- + Is 27 a.n--GSPin-l-r (nonzero values) of the reconstructed contrast. The
(19 .domain integrals were approximated by assuming
(19) that the contrast and fields were constant on sub-

whereas if _,._I < e, we use the Polak-Ribi.re squares. The resulting integrals over subsquares
conjugate gradient direction (Brodlie, 1977] were approximated by integrals over ;ircles of

Sgd _ Vd equal area, which were calculated analytically
g- + (Ya _. nn -t)o (Richmond, 19651. The discrete spatial convolu-

S + d,_, ', - . (20) tions of the GD operators were computed using fast
Fourier transform routines [Van den Berg, 1984].

Continue the iteration until either F,, meets a preset The measurement surface S was chosen to be a
eiror criterion or ceases to change. In all examples circle coniaining the test domain. The incident
considered we were able to drive the normalized fields were chosen to be line sources parallel to the
error F, below 1.5% before it ceased changing with axis of the scatterer considered as a cylinder in R3.
further iterations. These sources were taken to be equally spaced on

It should be pointed out that the choice of the the measurement circle, and the source locations
update directions described here is geared to were also chosen as discretization points on the
achieving reconstructions for high contrasts. When circle. All integrals on S were approximated by
the contrast is low, not only is it unnecessary to use point collocation at the discretization points, that is,
the sophisticated update directions for the field the rectangular rule with the integrand evaluated at
given by (17) and (18), it i actually Laneficial to use the end point. The measured data were simulated
the simpler update direction of the successive over- by solving the direct scattering problem with a
relaxation method for solving the direct problem. conjugate gradient method [Van den Berg, 1984].
The update directions for the contrasts, however, The forward solver was run until a residual en'or
should still be chosen as in (19) and (20). An criteria of 10-10 was met; that is, n was taken large
explanation for this behavior is that for low con- enough so that wD Z-- I ri11 < 10"0. This inver-
trasts the first few iterations in the successive sion method is illustrated in a number of examples.
overrelaxation method for solving the field equation In the fl..t two examples the test square was d -
converges faster than the corresponding number of 3A oa a side and was divided into 29 x 29 sub-
iterations in the conjugate gradient method. Thus squares (J = 29). The measurement surface was a
for low contrasts, corrections in the field based on circle of radius 3A. There were 30 measurement
the overrelaxation method are preferable to those stations equally spaced on the. circle, each of which
based on the conjugate gradient methods. What served in turn as the location of a line source (I
constitutes a "low" contrast is determined by die 30).

I
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oro -rfl

Re(x) IM(X)

n= 1

n= 2

U=64

n-328

Wn -C 128

Fig. 1. Reconstructon of complex contrast.

In the first example the actual profile was iuho- the earlier approach. Here we use the algorithm
* mogeneous an d complex, consisting of a square of described in the present paper. A constant nig

dimension A X .A with contrast X - 0.6 + 2i, was first found using d,, 1 until er, <0.01. Then,

surrounded by a slairger square, DA x 2A with con- the Polak-Ribi~re directions (19) and (20) were
ti-ast X= 0.3 +f 0.4i. Outside of this square the employed. The field update directions were always
contrast was zero, so that the scattering object was chosen to be those of t~ne successive overrela~xation
smaller than the test square. The actual profile is method, vi., - ri,1 as the contrast was sumf-
show~i in Figure I. This example was also treated ciently low so that the Polak-Ribi~re directions (17)Fby Kleinman and Van den Berg [1992), who used and (18) were hot needed. The results of the recon-
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Rg(X) IznWx

n m

aWit)k S.OJL in 641

tiMd

ni -'32

n=64

ni -~ 128

Fl 0.002

Fig. 7- Roonsuuction of real coauaat limiting case of kd -6v and x~-1: 30 staiions.

struction are shown in Figure 1, where the switch- scheme. Thus the new definition of the update
ing paint is indicated. After 128 iterations, when directions for the contrast resulted in a savings of

F1S-0.00)4, a reconstructed profile was obtained approximately a factor of 4 in iterations.
which required about 512 iterations using the eazlier In our second example we considered a higher

SAL_ _ - _
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values of test square dimension d and X,. were
tested: (1) d 3A, Xg.aa 1, (2)d = A, XmM i 3, and

orgi~a profile (3) d - O.3A, xmn• - 10. Moreover, the number of
source and receiver stations was reduced to 20, 1 -

Re() I-(x) 20. For each case the full method was employed
using a switching criterion of s= 0.01. The results
after 128 iterations are shown in Figure 3. They

n 123 show that the loss of data causes most instability at
d A x,.. 1 the shorter wavelengths, whereas spatial resolution

FIN- 0.013 diminishes at longer wavelengths. In obtaining the
results in Figure 2 with 30 stations and those of
Figure 3 for d = 3A, x= = 1, it was found that 56

'-= n 128 iterations were needed to obtain the initial guess for
-Fnd 2 A 3 the case with 20 stations, while 38 were needed with

30 stations. Moreover, the values of the functional
in (11), which was to be minimized were F12 a
0.013 for I - 20 and Fl 28 = 0.002 forI- 30, almost

n= 128 a factor of 10 smaller.
Flu - 0.015 0.3A X,.. - 10

Fig. 3. Reconstruction of real contrast: limiting cases of CONCLUSIONS

kdx.• - 6,4r; 20 stations. An iterative method for complex profile recon-

struction has been considerably refined to achieve
significantly greater efficiency. These refinements

maximum contrast so that the Polak-Ribinre direc- have been described, and the limits of the new
tions were used in both field and contrast updates. algorithm have been tested. The method combines
The actual profile was sinusoidal in both x and y, the features of successive overrelaxation, gradient,
x = sin (7rx~d) sin (7ryld) for 0 < x, y < d = 3A, so and conjugate gradient methods to minimize a func.
that kadxn.I = 67r. The actual profile and the tional consisting of normalized errors in satisfying
reconstruction are shown in Figure 2. We start with the field equation and the error in matching the
the simplest scheme in which we use the field measured data. The field equation serves as the
update directions of the successive overrelaxation regularizer for the ill-posed problem finding a func-
method (SOR in Figure 2) vt,, = re,,_ 1, and the tion in L,(D) to minimize the error in solving (4).
constant contrast update directions d, = 1. As The nonlinear optimization problem is not linear-
shown in Figure 2, this simplest scheme was used ized, however, the two components of the func-
until n - 8. Then with a switching criterion of e - tional in (7) are treaied somewhat separately. The
0.01 the Polak-Ribitre directions were used only for algorithm was constructed to delay large changes in
the field updates until n - 32 after which they were the contrast until the field was somewhat stable.
used to update both field and contrast. The original This was the motivation for the separate treatment
contrast was well constructed after 128 iterations at of the initial guesses as well as the subsequent
which point the cost functional had a value of F1.8  switching in the algorithm based on the magnitude
- 0.002. Experiments with higher values of kadxm. of the change in consecutive approximations of the
hindicterCd that thc algorithm failed to reliably recon. field. e,. The numerical results presented here, as
struct the profile. well as additional experiments indicate that the

Additional examples were investigated to deter- algorithm successfully reconstructs complex con-
mine how object size and IJxI individually influ- trasts for kd4xmI] S 67r. To achieve reconstnictions
ence the reconstruction, as the amount of data for large values of X,,,x, low-frequency measure-
diminishes. In these examples the test square was merts will not suffice to give reasonable resolution.
still divided into 29 x 29 subsquares, the profile was Further work is directed toward extending the
still sinusoidal, with X = a sin (,'ax/d) sin (wyld), method to include measurements at more than one
and kdlxal = 67r. However, three different pairs of frequency to accommodate larger contrasts. The
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algorithm appears to be stable with respect to noise. problem. Commun. Partial Differential Equations. 15. 1565-
We checked the effect of introducing random noise 1587. 1990.
equal to 10% of the maximuam value of the data. The Joachimowicz. N., C. Pichot, and J. P. Hugonin. Inverse scat-
algorithm was run, and at each iteration the real and tering: An iterative numerical method for electromagnetic

imaging. IEEE Trans. Antennaj Propag.. AP-39, 1742-1752.
imaginary parts of the contrast were set equal to 1991.
zero if negative values were obtained. The recon- Kleinman, R. E.. and P. M. van den Berg. Iterative methods for
structed profiles displayed a noisy distortion sovlng integral equations. in Application of Conjugate Gradi-
roughly equivalent to the magnitude cf the noise. ent Methods to Electromagnetic: and Signal Analysis, edited

by T. K. Sarker. chip. 3, pp. 67-102, Elsevier Science, New
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Abstra,:t. A method for reconstructing the location and the shape of a bounded
impenetrable object from measured scattered field data is presented. The algorithm is,
in principle, the same as that used for reconstructing the conductivity of a penetrable
object and uses the fact that for high conductivity the skin depth of the scatterer is
small, in which case the only meaningful information produced by the algorithm is the
boundary of the scatterer. A striking increase in efficiency is achieved by incorporating
into the algorithm the fact that for large conductivity the contrast is dominated by a
large positive imaginary part. This fact, together with the knowledge that the scatterer
is constrained in some test domain, constitute the only a priori information about the
scatterer that is used. There are no other implicit assumptions about the location,
connectivity, convexity, or boundary conditions. Some reenemcnts of the algorithm
which reduce the number of points at which the unknown function is updated are
incorporated to further increase efficiency. Results of a number of numerical examples
are presented which demonstrate the effectiveness of the location and shape
reconstruction algorithm.

Introduction complete families (Angell et at., 1986, 1989] or
Heyglotz wave functions (Colton and Monk, 1987:

Among the many inverse problems of CWrrent Colton and Kress, 1992], the algorithms specifically
interest there ae two general classes of prary incorporate information as to whether the scattering
concern in acoustics: electromagnetics and seis-roses. One class involves the determination of the object is penetrable or not.
cOnstiie parametervolvs ofe apentermbin scati ftere The present paper describes a method for recon-constitutive param ieters of a pe netrable scatterer t u in th lo a on nd s pe ft e b u d ry f

(e.g., local sound speed, index of refraction. con-
ductivity), while the second class is concerned with an impenetrable object without making the a priori

determining the shape of the boundary of an impcn- assumption of impenetrability. In fact, the algo-
etrable scatterer. In both cases the location and rithm is precisely the same as that used for recen-

orientation of the scatterer is also of interest. The structing the conductivity of a penetrable object and
data from which these reconstructions are at- uses the fact that for high conductivity the skin
tempted consist of a knowledge of how the object depth of the scatterer is small, in which case the
perturbs known exciting fie!ds at points exterior to only meaningfuil information produced by the algo-
the object. When the exciting field is one or more rithm is the boundary of the scatterer.
incident waves it is standard to use a knowledge of This work is a further development of the method.V Ak$ . "C';.,. L. a,' , a__ ,1 .- rlJ_,_ €

Whcetcr Uhc object is pcnetrabic or impenctrabic as .. cr.i..by V? ...... .... a . "a. P... 9

a priori information in designing reconstruction reconstructing the complex index of refraction of an
algorithms. Even whr.n the methods stem from the unknown scatterer from a knowledge of the field
same mathematical approach such as the use of scattered when the object is illuminated succes-

sively by a number of different excitations. The
method consists of casting the inverse problem as

Copyright 1994 by the American Geophysical Union. an optimization problem in which the cost func-
Paper number 93RS03445. tional is the sum of two terms: One is the defect in
C604.66'9493RS-03.o5So.00 matching measured (actual or synthetic) field data
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with the field scattered by a body with a particular by Kleinman and Van den Berg [ 1992]. and bere we
index of refraction, and the second is the error ih wild present only the essential steps and include the
satisfying the equations of state, integral equations changes needed to enforce the a priori positivity
for the field produced in the body by each excita- consraint.
tion. The index and the fields are each updated by a
linear iterative method in which the updating direc-
tions are weighted by parameters which are deter- Description of the Two-Dimensional
mined by minimizing the cost functional. A simple JProblem
choice for the updating directions was made by
Kleinman and Van den Berg [1992] which sufficed Assume that a two-dimensional conducting ob-
to enable some remarkable reconstructions. A more stacle D is irradiated successively by a number of
sophisticated choice of updating directions was known incident fields ufm, i - I,.- , 1. For each
described by Kleinman and Van den Berg [1993] excitation the direct scattering problem may be
which resulted in a more. efficient algorithm. This reformulated as the domain integral equation
algorithm was tested to determine its limits, and a
rough estimate of the upper limit of reconstructibil- L~.)Uj(p) : Uj(P) - GDXUJ(p) ", p GD, (I)
ity was found to be kd4mxJ - 61r, where k is the where
wavenumber, d is the diameter of the domain of.'
investigation, and JX .l is the maximum modulw;
of the contrast y defined in terms of the index of Gp;uj(p) :- k' L G(p, q)x(q)uj(q) dvq, p a D, (2)
refraction to be X - n2 - 1. This limit was deteri-
mined from examples of contrasts with nonzero real and
part and is definitely dependent on the algorithm, -as
is clear since in this paper we show that by changing
the algorithm, considerable higher contrasts Eire G(p, q) - H0k•(ktp - qI). (3)
reconstructed.

Consider the scatteing object to be an iahomo- Here uj is the total field corresponding to the
geneous lossy dielectric cylinder with relative per- incident field uj4, k is the wavenumber, x is taken
meability equal to one and of arbitrary cross section to be equal to i( 2 for real C ( - o-c aw), and p and
imbedded in free space. When the incident excita- q are position vectors. G(p, q) is the free space
tion consists of electromagnetic waves with the Green's function in two dimensions- G) is an

elea.tric vector Z polarized along the cylinder Wois, operator mapping L2 (D) (square integrable func-
then the contrast is given by X - s, I + !ow'w0, dons in D) into itself. If S is a surface enclosing D,
where er is the relative permittivity of the object, a then the scattered field uj'ý on S is given by Gv,%-uj
is the conductivity, co is the frre space permittivity, where Gs is the same operator defined in (2), except
and ca is the angular frequency (time factor is exp the field point p now lies on S. Hence Gs is an
(-iot)). No attempt was made to iýicorporate the operator mapping L 2(D) into L 2 (S). We assume
information that e,. axd oiwr0 are nonnegative quart- that uJf is measured on S and denoted byfj(p), p C
tides into the previously described algorithm,. Re- 5, the measured data for each excitation J. j -
cently, Habashy et al. [1992, 1994] demonstrated 1, .-. , J. The conductivity reconstruction problem
.that by explicitly incorporating this a priori nifor- is ta of finding X for given fj or solving the
mation ir.Lo a different algorithm, contrasts conmid- ' #.-
erably 14gher than kd/X~x - 61r could be recon-

structed. In the present paper we combine this idea GsXu,(p) - fj(p), p S., j - 1, .,J , (4)
of enforcing positivity together with the physically
motivated approximation that for large of0wo, X - for x, subject to the additional condition that u1 and
lotlwo even if zr 0 1, to modify our algorithm x - ie satisfy (1) in D for eachj. Thus there are two
appropriately. This new algoiithm is tested using error meaiurements involved, the first is the defect
synthetic data and is shown to be extremely effec- in matching the measured data in L2 (S), namely,
tive in reconstructing the location and the boundary
of the scatterer. The details of the method are given Fsj " Ib - iGs C2MJ II2 (5)

...... ...... .. I
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and the second is the error in the state equation in For each n, the functions vj,,, and f, are update
L2(D) directions for the functions uj,, and C, respec-

Fo.j - IluJ• - Lci•ul•, (6) tively, while the complex parameter a. and the real
p-wameter 8,, are weights to be determined. The

where the subscripts S and D are included in the residual errors at each step in the state equation and
norm II " 11 and later the inner product ( .,. ) in L 2 to data equation are defined as
indicate the domain of integration. Rather than seek
C to minimize the data error subject to the state rj.. - ujo - L(;uj.., pj.A sofj - iGs Cuj,., (10)
error as a constraint, we combine these two error
measures into one normalized cost functional and the value of the cost functional at the nth step is

I J J J

F0 W1 ) Iluj' - L(1C.)ujII' + -s XIV, -iGs 4 uj~ll' FA Mwb) >1 l1ri.nII + WS ElIPj.I., 11 )
I ~~~- whrJhr-1 eidasstsytereusv eain

- ( " lluj ll a-d w= - ll Ii~rj,, = rj,._. - a -,.L(( 1,)vj,,, + 2 i19 GGDC..- It JM- I
+~ ~ 2i..

I \J. I + 2ia,,13MGoD. t•RVJ,, + 49l.GD•.uLJ.. - I

(8)

In practice we approximate Cand uj in subspaces of + k13,,GDV.J.., (12)

L2(D), and hence the guiding principle is to simul-
taneously seek Cand uj in a way which minimizes F. pj,m - Pj,. I-I - tanG.4 . auj. - 2iGsCGsC., .uj*,. -v
The functional Fsj is used as the starting point for - 2ia . ("S ' - If.VJ',. - -0,Gs ,,uj.-
mavy uwvcnsion algorithms. Combining it with FDj
as in (7) is less z-ommon but has been used before •13)
[see Kleinman and Van den Berg, 1992, and refer- - G (13)
ences therein). Recently, Sabbagh and Lautzen- Substitution of these expressions in (11) results in
heiser [1993] used the same functional in an inver- an expkession involving terms de.termined at the
sion algorithm. Domain functionals have also been (n - 1)st step, the directions J. and vj,., and the
used in impedance tomography [e.g., Wexler et al., two parameters a. and fl,. Once the directions ;
1985]. and vj,. are chosen we have a nonlinear expression

in a, and 8,,. As Kleinman and Van den Berg (1992]
Inversion Algorithm did, the values of the parameters a, and PA, are

The basic idea underlying the inversion algorithm determined by requiring F. to be a miuznium. This
is to combine a gradient type of algorithm to itera- minimization of the quantity F. is accomplished
tively solve the direct scattering problem together using the Fletcher-Reeves-Polak-Ribibre conjugate
with a similar algoritlun for solving the ill-posed gradient method [Press et al., 1986]. The starting
inverse problem. Sabbagh and Lautzenheiser value for a. is obtained by taking 13,, - 0 and
[1993] attempted to do this by constructing one Minimizing FA, while the starting value for P. is
unknown vector consisting of all the fields and the found by setting a, - 0. neglecting the terms of 0)1
unknown contrast and updating with one gradient and again minimizing FA. The essential ingredients
direction and one coefficient. Our approach differs remaining are the update directions vn,, and & and
in that we update each field and the contrast sepa the initial choices u1,0 and ;o.
rately. Specifically, we propose the iterative con-
struction of sequences {uj.A} and {"} as follows: Update Directions
Idj,, -Uj,.._. + = 'j,., . 4 .4-i + /3,,.,. (9)

As the update direction for the field we take the
n - 1, 2,". direction

FrMi
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J of C.-t.(q). We therefore cannot start the iterative
. (gj':.,,, a-. -g9J.-1)D scheme with a 2xro estimate for '0, and a more

",." careful choice must be made.lJ,.n "9,•.s + Vj,. -•, .n•

J . IInitial Choice
(14)

The initial choice is determined from a guess of
lHere gj, is the gradient ofF (see equation (7)), with the contrast sources

respect to changes in the field uj, evaluated at the
(n - I)st step, that is, wj(q) - 1C2(qjuj(q), q e D, (20)

gJn " wD(rJ.R - + i• . .) that follow from the linear data equation

- tw2. 1f 7SPJ., t, (15) Gsw/(p) -fj(p), p . S. (21)

where the overbar denotss complex conjugate, In contrast to Babashy et al. [1992], we do not
solve this first-kird integral equation, but we take

t" an estimate

r, I(q)-k 6(p, q)rj,.(p) dv,, q1ED, (16)- sj(q). (22)

and The constant y is determined by minimizing the

error, see (5),

(Y.Sppi - I (q) .kPf 0(p, q)pj,m- I(p) dvi,, q E D. (17)
.1 J J

>]2 s - :EIr j g F, ILfi - -yGsC/ G i.j1
0 is an operator mapping L 2(D) into itself, while j- J-i .- (
Os is a map from L2 (S) to L2 (D). The choice of the (23)
direction vj,. in (14)-(15) iu the Polak-Ribitre con-
jugate gradient direction [Brodlie, 19771 assuming This leads to
the contrast does not change. J

As the update direction for the contrast we take 2 Yi, Gsiffsf.)S
the direction J1

*-Y
S- 1 

(24)+• -. Z - (18),)f. -g f.• +W. -, II D, J" E I,• •ll• ' s z l s/,l
4-I

where gf is the gradient of F with respect towher g~ isthe radentof wit repec toWith the initial estimate for the contrast sources

changes in f, evaluated at the (n - 1)st step, that is, wj,i, an initial estimate for the fields ut follows

L j from the state equation (2) as

"- m WD ., I Ujo(p),,u)(p)+Grnwj,o(p), pED. (25)
J-1

Once the initial estimates for the contrast sources
-S w 7_ j.. - 1sPJ.A - I1 (19) and the fields have been determined an initial esti-

mate for the contrast Co (Co > 0) follows from a
J" minimization procedure of the. error in the constitu-

The choice of the direction f, in (G8)-(19) is the tive relationship (20) [see Habashy et al.. 1994]. For

Polak-Ribi~re conjugate gradient direction [Brodlle, the initial estimates this relation is rewritten as

19771 assuming the fields do not change. Note that
the contrast gradient gf(q) vanishes for zero values Im [wij*(q),7j.o(q)] - C0,(q)Juj.o(q)J2. (26)

ill ' I.. . . -- "I I I I I... .. . . . . . . ..III I n - - i l . . • . .. - " • -- " '
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.In order to meet this relation for all j we use the circle containing the test domain. We assume that
ideas of Kohn and McKenney [1990] and minimize the radius of this circle is large enough so that the
the cost function far-field approximation of (4) may be employed, and

the far-field coefficient is the quantity of interes: so
/1( I IM [wj,0(q)i7jo Co) 2 that the dependence on the radius is removed. In

• •;(q) * Cq) luj.o(q)l Co(()Iuj.o(q)I that case the data may be written as

i / 2 \ MJ
~'*1 {I (joqJ~oq~~fj~p) - - f- exp (iijpl - i fw (29)I 4 1_ 42,,lujo(q)l4_ 4)

J - i1 and the data equation (4) may be replaced by

2n Imwj,0(q)djgo(q)) 1. (27) J)Cxp (-ik0 q)xk(q)uj~q) dvq "f7(0). O 6 S, (30)

Note that only the first two terms in the second where 0 is the unit vector in the direction of
expression depend on 10. Miimind.aion of this cx- observation and S now denotes the space of these
pression yields unit vectors, the unit circle. Further, fj7(f') is the/ imeasured far-field data. In the examples we meca-

gMLWJ(q)ar 0 (q)3} 2  sure the far-field at 30 stations equally spaced
- juo(q)1' around the object. Each of the stations serves in

C--(q) , q ED. (23) turn as the location of a source (1 - 30), and the
J ~incident fields can be approximated as plane waves.

I Juj~o(q)12  All integrals on S were approximated by point
-/ collocation at the discretization points, that is, the

in ctangular rule with the integrand evaluated at theWith the expressions of (25) and (28) the initiald end point. The m.asured data were simulated by
estimates for uand 4 have been determined, and solving the direct scattering problem for an impen-
the iterative scheme is now completely defined. etrable circular cylinder. The analytic solution in

terms of Bessel functions has been employed. The
Numerical Examples radius a of this circular cylinder was 0.015 m. Our

reconstruction of the location and the shape of th-iscircular cylinder is illustrated in a number of exam-the algorithm was used. In these examples it was p
assumed that the unknown scatterer was located pies.
entirely within a test square of known diiension Empl
although knowledge of the precise location within
the test square was not assumed. This test square In the first example the test square was divided
was partitioned into equal-sized subsquares, and into 31 x 31 subsquares of 0.003 x 0.003 M2 . The
the integrals over the domain D in the algorithm wavelength is A - 0.090 m, so that ka - 7d3. The
were all carried over this test square. The position measured data were calculated for the cylinder with
of the actual scatterer is determined as the support origin at the center of the test square. We then
(nonzero values) of the reconstructed contrast. The solved the inverse problem using the algorithm
domain integrals were appro..""at"d by a.suming described in the previous sections, and the error
that the contrast and fields were constant on sub- F,,2 is plotted in Figure 1 (solid line). Although it is
squares. The resulting integrals over subsquares very hard to minimize the error in the fields inside
were approxi.nvted by integrals over circles of the impenetrable object, we are still able to reach an
equal area which were calculated analytically (Rich- error less than a few percent. Some surface plots of
.ond, 1965]. The discrete spatial convolutions of the reconstructed profiles (the imaginary part of the

the Gu operators were computed using fast Fourier contrast X') are presented in Figure 2. We indeed
transform routines WVan den Berg, 1984]. observe that after a relatively small number of

The measurement sutrface S is chosen to be a iterations only the boundary of' the object becomes
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-- I=[Xl- 12.3

IS I..... bo-m- - ,

FIgure 1. The error F." a~s a function of tkLa number of
iterations.

Figure 3. Comparison between the reconstructed
visible, and the location and shape of the object ca boundary and the exact one of example I (n - 64).
be estimated. Specifically, we observe that after
-16 iterations the inaginary part of the contrast at
the boundary becomes larger than six, and only thc coinci 'des with the exact boundary, and we choose
cont~ra~st at the boundary of the object remains this as the reconstructed boundary.
increasing when we increase the number of itera- Eail
tions. At 64 iterations the contrast at the boundary Efzl~
ha~s reached values from 10 up to 25! This result has In the second example we consider a smaller
also been presented in Figure 3, where we have wavelength: A - 0.030 mn, so that ka - r. We then
plotted the contour lines 1m W~ - 12.5. The exact solved the inverse problem, and the error 411 is
location of the bouudary of the object is indicated plotted in Figure 1 (dashed line). Some surface plots

by the dashed circle. The outer contour line almost of the reconstructed profiles (the imaginary part of

4

Fligure 2. The reconstructed imaginary values of the contrast for example 1. At n - 6.4 the largest
value is 25.3.

m W3 I
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Figure 4. The ve~onstructed ii"gina-y values of the contrast for example 2. At n 64 the largest
value is 6.02.

the contrast X) arc presented in Figue 4. After only impeieurble object by reconstructing the imagi-
four iterations the boundary of the object is clery nary cantrat at the boundary. However, the recon-
visible. Secifically, we observe that after about structed contrast at the boundary becomes highly
eight iterations the imaginary pail of the contrast at oscillatory after a couple of iterations. The peaks
the boundary becomes larger than one and only the ippear to increase with the number of iterations,
contrast at the boundary of the object remains and it btcomes dificult to choose the level value of
increasing when we increase the number of itera- the contour that estimates the boundary of the
tions. After 64 iterations the contrast at the bound- object. We therefore adopt a slightly modified re-
ary has reahed values fromZ2 up to 6. This result is construction scheme. Fir-t of all we have observed
also presented in Figure 5, where we have plotted
the contour lines Im [x] = 2.5. The exact location of
the boundary of the object is indicated by the
dashed circle. The outer contour line approximates -m 2
the bounda--y very well.
E- ablE 3

In the third example we still have A - 0.030 m,
however, the measured data were calculated for a%
cylinder located close to a corner of the test square.
The reconstruction is shown in Fig=r 6. It shows
th•i our scheme not only approximates the bound-

ary of the oliect very well, but also the location is
demnvidned prt•cisely. This is -stressed in Fig=r 7.
where after 64 iterations the contour lines Im [XI L
2.5 have been plotted. Again, the exact boundary of
the object is indicated by the dashed circle.

Bounded Contrast Reconstruction

In our examples we have seen that our scheme Figure 5. Comparison between the reconstructed
indeed reconstructs the location and the shape of an boundary and the exact one of example 2 (n - 64).

I
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Figure 6. The reconstructed imaginary values of the contrat for example 3. At n = 64 the largest
value is 8.87.

that there is no improvement in locating the bound- times the mesh width. This factor is chosen to
ary after the contrast has reached . value such that provide a reconstructed object such that we ob-
the penetration depth of the wa,,efield is of the serve a "boundary wall" with a thickness of two or
order of the mesh width in the tesLng domain. The three times the mesh width. We therefore require
visualization of the boundary of the object is ia- that tho interior (complex) wavenumber ki(q) satis-
proved when we impose an upper bound to the fies the condition
reconstructed contrast in such a way that the pen-
etration depth of the wavefield is not less than three I [k1(q)]3A s 1, (31)

where A is the side length of a subsquare of the test
domain. From (31) and the fact that X + I = k 2l/k2

it follows that the maximum reconstructed contrast
Im(X] =Z Z.5 follows from the relation

Im E(I "71 x.) = 3-." (32)
3k,&

The value of Xx= is assumed to be pure imaginary
and is determined numerically. If at some point in
the iteration the reconstructed contrast is larger
than Xm,, the contt is replaced by .,,jx. In view

-of this modification, the residual errors have to be
recomputed and the iterative scheme restarts with
new contrast directions &. By enforcing the con-
tr-ast gradients to be zero in all the points q, where
the contrast is equal to X.=, the contrast directions
vanish in these points, and no updating of the
contrast takes place in these points. Operating in
this way, the scheme is able to "concentrate" on

Figure. 7. Comparison between the reconstructed updating the contrast at the remaining points. This
boundary and the exact one of ,xample 3 (n - 64). accelerates the reconstruction and visualization of

AmI I.. I I___iI_ ;I
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1.0 ..------- i---- files (the imaginary part of the contrast X) are

presented in Figure 9. After 32 iterations we ob-
serve no substantial improvement in the reconstruc-I 0tion, as is seen by examining the reconstructed

E•i.-le II profile after 128 iterations. Comparing Figurs I and
lFn 0.6 8, the error F64 is now much larger, but this is

mainly due to the mismatch in the fields inside the

0.4 object. Relaxing our constraint on the maximum
value of tLe contrast will decrease this error, but it
does not yield better reconstruction of the boundary

0.2 -of the object. The reconstruction of the boundary is
4 visualized in Figure 10, where we have plotted the

contour lines X = XA. The exact location of the
o 16 32 •- bound&ry ui the objcct is indicated by the dashed

circle.
Figure 8. The error F,1 as a function of the number of
iterations when the maximum reconstructed contrast is Example 2
constrained.

In the second example with a wavelength of A

the boundary of the object. We illustrate this pro- 0.030 mand a side length of a subsquare of 0.003 m,
cedure for our three examples. condition (32) says that the maximum reliably re-

constructed contrast amounts to x. = il.20. We
Example 1 then solved the inverse problem with this upper

In the first example with a wavelength of A - limit, and the error F,'/a is plotted in Figure 8
0.090 m and a side length of a subsquare of 0.003 m, (dashed line). Some surface plots of the recon-
condition (32) says that the maximum reliably re- structed profiles (the imaginary part of the contrast
constructed contrast amounts to x.,.x = 6S.97. We X) are presented in Figure 11. The result after 64
then solved the inverse problem with this upper iterations is also presented in Figure 12, where we
limit, and the error F,,'2 is plotted in Figure 8 (solid have plotted the contour lines X = X., The exact
line). Some surface plots of the reconstructed pro- location of the boundary of the object is indicated

.=16n 32 n- 1.28

Figure 9. The reconstructed imaginary values of the contrast for example 1. The maximum
reconstructed contrast is constrained to 5.97.
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IM, . 5.97 IM--. - 1.20

-- Exct 60andwy - Examt bMd@ -

Figur 10. Compariscn between the rcconstructed FLgure 12. Comparison between the rcconstructed
boundary of example I (n - 128) and the exact one. boundary of example 2 (n 64) and the exact one.

by the dashed c(ircle. The outer contour line approx- not only approximates the boundary of the object
imates thc boundary very well. very well, but also the location is determined pre-

cisely. This is stressed in Figure 14, where after 64
Eusmple 3 iterations the contour lines X - y,, have beoen

The reconstruction of the shifted cylinder is plotted. Again, the exact boundary of the object is
shown in Figure 13. It again shows that our scheme indicated by the dashed circle.

• •16 3..2 •.64

igure 11. The reconstructed imaginary values of the coni-ast for example 2. The maximum
miconstructed contrast is constrained to 1.20.

, •" .. . .• . . ,i • I I II I I I II 1_ _M _ .. . I -. . .. . . ... . . . . . .
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bigure 13. The reconstructed imaginary values of the contrast for example 3. The &ximum
reconstructed contrast is constrained to 1.20.

For this example we also investigate the influence this extremely high noise level yields some local
of noisy data. We have added to the data a random anomalies, but the location and shape of the cylin-
noise signal with maximum amplitude of 50% of the der is still clearly visible in the reconstructed con-
maximtum amplitude of the data. The reconstructiou trast. This example indicates the robustness of our
process is shown in Figure 15. It is observed that reconstruction scheme.

The computer code was run on a VAX-4000
workstation. The last example requires about 8
Mbyte memory, while one iteration takes one

- -<] = 1.20 minute CPU time.

- -act boundary Finer Mesh

Finally, we present the reconstruction of the third
example when the test domain is subdivided into a
finer mesh. Now the test square is subdivided into
61 x 61 subsquares of 0.0015 x 0.0015 m 2. The
reconstruction is shown in Figures 16 and 17.

S~Conclusions

An iterative method for reconstructing complex

S~constitutive parameters has been modified to recon- m
struct the location and shape of impenetrable ob-
jects by exploiting the fact that. electromagneti-
cally, impenetrable objects are really lossy
dielectrics with very high conductivity so that the

Figure 14. Comparison between the reconstructed skin depth is very small, hence the data from
boundary of example I (n 64) and the exact one. impenetrable scatterers is consistent with the re-
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Fgure 15. The reconstructed imaginary values of the contrast for example 3 from data with 50%
noise. The maximum reconstructed contrast is constrained to 1.20.

construction algorithm. Since the incident field de- neighborhood of the surface. Using this fact, we
cays drastically as it penetrates the body, the only employ an algorithm designed to reconstruct the
reliable information about the body that can be conductivity (and pernittivity) throughout the body
infenred from scattered field data comes from a but give credence only to the boundary of the

support of the reconstructed conductivity when

-m[xI - 3.09

E }xact bounda:y

01
Figure 16. The reconstructed imaginary values of the
contrast for example 3 and a refined mesh. The maximum Figure 17. Comparison between the reconstructed
reconstructed conu'ast is constrai:.ed to 3.09. boundary of example 3 (n - 64) and the exact one.

S. . . . , I., •, -T , ' •
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Chapter 31
Full Low-Freouency Asymptotic Expansion for

Elliptic Equations of Second Order•
I. Kiein'uant B. Vainbergl

Abstract
The present paper shows how to obtain the low frequency expm.nsiont of solutions of

a large dla of exte.ior boundary value problems involving second order elliptic equa-
tions in two dimensýýus. The differential equations must coincide with the Hlelmholtz
equation in a neighborhood of infinity, however they ray depa.rt radically from the
Helimholtz equaItiw in any bounded region provided they retin ellipticity. The pro-
cedure for determininS tne tull low frequency expsasion of solutions of the exterior
Dirichlet and Neumann problems for the Utlynholtz equation is included as a speaW
case of the results presented htre.

1 Introductitn and Forniulation of the Main Results
Let Q be an unbounded doiialn in V2 with compact infinitely smooth boundary r, let

A=Z 4i~)L+ (z)-L + C(Z

be au eilptlc operator of the second order (that is the matrLx (ajj(t.)) i1 nou-singtir) with
infinitely smooth couificieuts in C1 aud i#(x) real valued and let A coincide wltl the Laplace
operator A In 2ome neighborhood of infinity. Denote by u, a solution of the problem

Au+k 2 u-, X C-•(
1 -U - ( )

where B is either the identity (Dirichlet boundary condition) or the following operator

Here o -. A,-a(•)n is the derivative along the conormal vector (n -.. (ni, n2) is the

unit vector which is normal to 1" and directed into 0), •/is the derivative along r,p, q eg'.
"Finally de.ote by

&7.1 RkZu :L-(0Z)- H2(Q), 1mk > 0

t U~iVerity Of 15ela.Wax, Newark, Delaws~rc 19716
S'University oý North Carolina, Charlotte, North• Cwolzia 282W3

y-".
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the operator which takes functions f e L2(Q) into solutions of problem (1) belonging to the

Sobolev space H 2(Q).
With a an arbitrary constant we define a cutoff function c = x(a) e ( such that

X = I when Izi < a and X = 0 when Irl > a + 1. Then a restricted resolvent is derned as

A =XRL X: L2(fl) - H()

The operators A&, Rk are defined "ud are meromorphic functions of k when Ink > 0. More-
over the operator Ah, ink > 0, has a meromorphic continuation on the Rienana smuface of

the function lnk(see [1)). Let us stress that A! = xRaf if f : 0 for Ixj > a. In thib case the
function U = 14f is a solution of (1) for jxj < a.

The present work is devoted to the study of the asymptotic behavior of the operator
A2 (that is of the solution u = 141, Jzj < a of the problem (1) with f = 0 for jx( >a as
=k -ý 0. We consider only the two-dimensional case, since in other dimensions the asymptotic
behavior of the solution of this problem is much simpler. The most recent zesults for the
two-dimensional cas as well as extensive tefreuces to earlier work are fPwud In [2]. There
the problem was supposed to be form'ally self-adjoint (i.e. (Au, v) = (u, A,) for functions

a, v E C0•0(i) satisfying specified boundary Louditions) and nonpositive. or to be more exact

it was supposed that

(Au, u) < -a JIVUa2 de, a > 0 for all u E C-(1) with iBuir = 0. (3)
0

Here (., .) denotes the inner product in L3(f0). For this c.se [2] gives the asymptotic behavior
uf the solution u = uk of the problem (1) with accuracy O(kW).

However more than ten years ago, in [(], there appeared results of one of the present
authors concerning the low-frequeucy azyml-totic behavior of solutions of general elliptic

problems of any order polynonia~ly depending on the spectral p:Lrameler. Those results
apply to problem (1) and allow one to obtain ,he full aSyMptotiL expansion of the operator
ft, asJl -- 0. This expansion has the form

UO nM1 L2
J4 -[- inn I- r A1 << 1, (4)

.•oxf•0P(In k) '"

where a is an integer, i is a non-negative integer, P is a polynomial with coustart coeffi-
cients, and J',, L3(SQ) -- du(12) are bounded operators independent of k.

The integers a and I and the polynoini.I P are not known in general, even for equations
of 2nd order. It is the purpose of tho present work to zpecify the precise form of expansion
(4) for solutions of two restricted cases of problem (1).
Case L The space of bounded solutions of the homogeneous problem

Au=O,zG ; Bu=O0,zr (x)

consists of only the trivial solution.
Case U. The space of bounded solutions of (5) is one dimensional and if u is a nontrivial
solution then

lim u(z) • 0. (6)

aand the formal a•djont to pioblem (5) (see (13) below) also ha- a bounded solutioa with
property (6).

lll~i IIIIII I I I I I I I --



298 Kleinman and Vaimberg

The exterior Dirichlet problem for the Helmholtz equation is an ex" ple of Case I while
the exterior Newmann problem for the Helmholtz equation is an examnple of Case II.

It is well known that if u is a bounded solution of Laplace's equation in a neighborhood
of co then for r sufficiently large, u has the form

u(s) = Co + -(a. cos mp + 6, sin nw)r-" (7)
n-a

In particular this representation is valid for bounded solutions of problem (5) and of problem
(1) with k me 0 if f = 0 In a, neighborhood of infuimty. Therefore, condition(6) is equivalent
to the requrement that Co 0 0 for such solutions.

The conditions embodied In Caese I annd II are less restrictive than those used in (2]. If
condition (3) required in [2] 4s fulfilled then together with (7) It follows that there are only
constant solutlons of problem (5). This means that either Case I or Case II apply. In our
work we do not require nonpositivity, condition (3), nor do we require that the problem be
self adjoint. Moreover we obtain not only the flrft few terms as In [2], but the complete
asymptotic expansion of the solutious.

Unlike [2] we consider (for simplicity) only the problems In which the boundary and
coef&ients of the equation are infinitely smooth.

The main results are contained In two theorems which are presented in this paper. Let
a be an arbitrary fixed constant such that r is contained in the circle Ijx < a - I and f =
0 when jxl >a. Let i2a = Q• n P : jIx < a} and A = A + k2 when IrI > a - 1. Lot L2.4 be the
space of functions which belong to L2 (fn) and are equal to zero when xlj > a. In particul.ar,
f G L2...

In Case I we denote by uO, u, -he solution3 of the problems

SAuo =f, X C S1
Buo = , x e ; Iud o oas r- oo (3)

, ( 9 )
'1But o, x e r; jut -lnrl < oos r -- oo

SAu2 = 0, Q (1f0
Bv 2 =o, x Er; lu2 + ictzi +41Xx2 < oo as I. (00

where at, b, are the coefficients in the expansion (7) for uo. We show that the uniqueness of
the solution of problem (8) leadis to the solvability of this problem. After we have established
this, we can easily infer the unique solvability of problems (9) and (10) by reducing them
to problems of the form (8). This is accomplished by writing the solutions ui and A2 of
problems (9) and (10) in the form ul = 44nr + w, and U2 = -- V(alz1 + brZ2)W+ W2, where
b = 0(m) is a cutoff function which is equal to one for jxj > a and equal to zero In some
neighborhood of r. Thar, the problem of finding w, is of the form (8). Moreover since the
expausion (7) is valid for wi, In ptrticular the constant

Ao = liin (u• - 1ir) (.I).;

is defined. Finlsly, we denote by 0 the constant which occurs in the asymptotic •c]ion
of H(')(-), the Ilankel f•.nction of the first kind and order zero-

/0(z) = (In: - 3) + Q(: 2 .nx), z 0.

.8.. I
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With this notation established we now state th"' main results.
Tawrtao 1. In Case Ifor the solution u ••f of problem (1) with e L*,;.4e

following asymptotic expansion is valid wihen - :s argk < •, -, 0:

N ,m nI-fl+

MUOnm wQmO

where U.,nj(Z) are independent of k and

The leading terms of the asymptotic expansion hatve the form

u = uO(X) + -O #u(x) + k2Mrku 2(x) + 0(k'2 )

where io,Le,u2 are the solutions of problems (8) - (10) and Co = lir uo(x).

flozua�ak li fact the corresponding expansion for the operator Rh converges In the oprator

norm for 0 < jkj < Ik-Qi for some Ikol > 0 and therefore the [aflaite series for u(N :a 0o)
couverge4 in H2(11.).

In Case 11 lot u4 deaott by vo the solution of problem (5) such that

lira VO(z) = 1,

Let the problem
A'u =-0, zG; D'tt=0, Xef (13)

be formally adjolnt to (5), that it, the operator A c"n be obtained fro'n A by substituting
us for bi aw! e- , for c, If B I then B- = 1, if B ha the form (2) then B,1" !tb same

form with p Instead of p and -+ - E+•i(x)n) instead of q. If u, I e C"(S)), and Bu =
/B"v = o on r then

fAu~dv /uA vdx +f (Lu. d.5 R a

W~e show that the ,:pace of bounded solutions of' problem (13) in Case 11 is also cue-

dimensional and there exists a uniqae solution v. of p!obleui (13) such that

lira V.(Z) =1.

Let us denote by v, the zolution of the inhornogeneous prob~le~m (5) (that is the solutjo o

Sproblei (1) with k = 0) %_ch tha-t

vi "- Or(hnr -X) 0 as r" - co

•l where a = o(f) is const~t. We show that in Cai 11 such a iohitiov. exists, is unique Z.nd

I I



300 K!einmaa and Vaimberg

Tno•.•m 2. In Case II for the solution u A= l of problem CI) with f e L.,., Mhe
followting asymptotic expansion ýs vaiid when -• < argk <_ -, IkI - 0 :

N •M+i
Un k -,Am,,, (:C + ias(Is

muO vm.O

where u,,., are independent of k and

I ~I~lr~ln•. <_ C()la•'j~ +2 1n2N÷•,klIL'l,.

The eading tcrns of the asymptotic ezpa~ioy' hawe the form

u=a*nkvo(z ) + vj(z) + O(k2ln 3 k), lkl --

where a is deflraed in (14).

IfvosI then um, u 0 for n > n+.
P.Laxuks.
(1) The remark following Theorem I also applies here.

(2) 1h is not dlificult to write out the sequence of problems similar to (8)- (10), from whiic
we can find all the coefficients In the expansions (12) and (15).

(3) In the present work we have assumed that the data f is Lndependtnt of k. In many
applications, of course, f will be a known function of k. In such Casen when f may
developed in a series In k the present anazlysis will still apply. The result will be the
product of the expansion of the inverse operator, /, with the expansion of f.

Th.wrems 1 and 2 are proved in a. similar fashioa and the details will be presented
elsewhere. Here we will provide an outline of the main ideas in the proof of Theorem 1.

It consists first of establishing the expansion

CO +(k2 In" k), x r nf., k- 0 (18)

for the solution u =a Af of problem (1) with f e L2,. a-nd uo, ul,Co,,Ao and 0 as In Theorem
1. This expansion is obtained from the asymptotic expansion of the resolvent in (4), the
differential equation (1) and an integral representation of the solution (actually &n integral
equation) based on Green's theorem, namely

The last step uf the proof Is based on a special parametrix of problem (1). ThispLra~metrix "involves the orpcrater V which is defined as that operator which maps a&UY.

function f 9 L2,. into the sum of thc first two ternis on the right hand -ide of equation (16)..
Then choosing C e C*%Rý) such that C = 1 for I=1 > a - 1 and C = 0 in a neighborhood ofi r.

we detinie the operator 4% as".

O (I1- i7)Uh -L( M 1:z-yA,7UdV

Now we assume a solution of problem (1) in the form u = 0,h with unkno,';m I, C i,
This lead.s to the equation (I' I a)h f for h, where the norm of Th is small by i

I ~ ~ ~ I IIIIIII
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equation (16). This 4~ows us to obtaiv. an a~syraptotic expxs~oD for (1* + Tk)-%Zgj ý2Iva
fo~P4 ~~+T1 ~

Ackuzowledgmont: This work was parti2;;y suppnrted under AFOSR C-raut 91-0277..
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Asymptotic Approximation of Optimal Solutiona
of an Acoustic Radiation Problem1

T. S. Angeil and I. E. Kleinman
Center for the Mathematics of Waves
Department of Mathematical Sciences

University of Delaware
Newark, DE 19716

and
B. Vainb,,g

Department• of Mathematical Scie~uce

University of North Carota
Charlotte, NC 28223

Abstract We have presented, eLsewhere, the problem of choosing Ncumaan data

for the exterior Helmholtz equation in order to optimize a functioxial of the radiated

far field. !,-. this paper we use asymptotic. methods to determine az approximate

optimal soition whose support is in a prescribed :gion of the boundary.

I. Introduction

Let Rt be exterior of a strongly convex bounded obstadle B C 1R' with infinitely

smooth boundaryI r. Let u be a sohutiou of the problem
(A + •=) = , .•e•

h, Ehr
an a. iku = -':-) r -- oo

where h is an infinitely smooth function and a/dn is the derivative in the direction

of the (exterior) normal which is directed into the unbounded region.

'AFOSR # 86-0269



It is well known that problem (1) is uniquely solvable. Let us denote by T

the Neumann-to-Dirichlet operator, which transforms .& into ulr, where u is the

solution of problem (1). This operator, initially defined on smooth functions, can

be extended as a bounded operator on the whole space L2 (r) since T is a pseudod-

ifferential operator of order -1 [9, 10). Let us introduce the following norm in the

space L 2 (r):

I --h[ll [ lhjlL 2(r) + JIThll 2(r)11/2

It is also well known that the solution u of problem (1) has the asymptotic

behavior in the far-field:

,=f / .x ) -, (1 +0(, 1 ), O -- 00

where f(8, k), 9 E S"-1 , is a smooth function which has the form

(2) f(e, k) = '8" J [h + ik < 0, f > Th]]--<8,Y>dS.

r
Here

(3) 3n = fl(k)= - I

Let a = a(9) be a piecewise continuous non-negative function on the unit sphere.

Let the functional F be defined by

F(h) = J f(9)12 a(O)d.s, h E L (r),

whie S is the element of surface area.

We are interested in the maximum value of the functional F on the set U of

functions h in L2(r) with ji1h[il = 1. In aadition we are interested in characteriz;-ag

2



the functions h, IlhjIl - 1, where F attains its maximum. The existence of such

functions h follows from the results of [1], [2].

In order to formulate the main result we need to introduce some notation. Let

the mapping P : r -+ S"- transfer each point z E r into the point 0 E S"-' for

which fa = 9, where fi is the unit vector of exterior normal to r at the point z.

Note that we will use the symbol & to denote both a point on the unit sphere and

the position vector of that point. For an arbitrary e > 0 we construct a function

,1 = g9(O) such that

(4) f ,g.()I'dS = 1, J ,g.(6),'a(9)dS > sup a(9) -e.
S"-1

It is obvious that we can take

g, = ( J IV2ddS)1 /

whe,-e V is any function on S'- 1 with support in a region where a(O) > sup a(8) - e.

Let jc(z) be the total curvature (product of the principle curvatures) of 1 at thL

point z E r.

The main result of the paper is contained in the following theorem.

Main Theorem. 1. If jIjhill = 1 then

(5) 0 < F(h) < -ua(9).

2. Let e > 0 be an arbitrary positive numbLer, g, be a fixed function (independent

of k) which satisfies the relations (4) and

(6) = h,) = 4 '2k

_ Ih'(;) = 2g,(x)Vf~x|
F -q i i • i" i i..... i i i ' i i ' i• i i i' i " i • '



Then

(7) 111h.111 = 1 + 0(k-1), ,n oo

and there exist k0 = ko(e) such that

(8) > max a(8) - 21l

if k >k.

From this theorem it follows that if

ýq= hq/DIhIIhjI

then F(h,) differs from its maximum value on the set U = {h E L2(r): Ij1hill = 1)

by not more than 3e if k is sufficiently large.

IL. Asymptotic Behavior of the Solatious of the Problem (1)

Theorem 1. If h is independent of k then there exist infnitely smooth functions

ai(z) such that the solution of the problem (1) has the following asymptotic expan-

sion:

(9) ,= eiks~U [ a (sx)(ik)-- +UN]j,.-o

where S(x) is the distaace between a poiut x and r, ai E COO(f(), a0(x) h(x) on

r and

I8r CluN k-- N 2 , jzj-< a, k > 1

for any a < oo, a= (l,...,a) and some constant C =C(a, a, h).

4



Corollary: If x E r then

U = (ik)-h(z) + k- 2 u1

where the function ul = ul(x, k) and any of its derivatives along r are bounded

wheu k•> 1.

This result is obvious from the point of view of physics. But the strict math-

ematical proof is not very simple, as the problem under consideration :nvolves two

large parameters: as IxI -. oo, the unique solution is singled out by (radiation)

conditions, and, as k -- oo, we are interested in the asymptotic behavior of the

solution. High frequency asymptotic results have been obtained previously for the

problem of scattering of plane waves by an inhomogeneous medium [3],[41 and by

obstacles [5],[6]. However our results are much simpler due to the fact that in the

present cases h is independent of k (or has a "simple" k dependence) so that no

cauctics occur. In order to prove Theorem 1, we will follow the same technique

introduced in [4] and employ the nonstatiouary problem, corresponding to Problem

(1):
Vt-A = 0, x =!Q

(10) fU -iktv= , t xE; =, t<llZ
y- lr = hP(t)e-•, tEll; v 0, * <0,

where 3 E C', p3(t) = 0 when t < 1/2, R(t) = I when t > 1.

The connection between problems (1) and (10) is established by Theorem 3,

below, the principle of limitin•g amplitude. However, we will need more accurate

estimates of the reth;--,4-1- 11-3-C whicha arc u fually ued in y".c. "O"

this we need the following uniform estimate of the solutions of the initial-boundary

value problun with homogeneous boundary data

(11) w- W 0= , . 0, t> 0  f- 0• ; •,= t=0 0, W'tI,.0o AX)

5



where fC EL 2 (fl), f(s) =0 when IxI > a.

Theorem 2 For any a there exdsts To = To(a) such that the following estimates

are satisfied

(12) Iaa&WI _ Cl(t)(OIIIfL2, t> TO, I.i < a

where j and a = (a, ... ,.a.) are arbitrary (non-negative integers), C depends on

a, j and a but not on f and
= -tt, e > 0, if n is odd

W• t2-- In t if n is even

This large time behavior of w may be obtained !rom Theorems 4 and 6 of Chapter

10 in [4].

Remark: This theorem shows that the solution and all derivatives decay as t -+ oo

uniformly with respect to the initial data if n > 2. If n = 2 it is possible to show

that (w - 31 In t - c2) will decay for some constants 61, 2.

Now we establish the limiting amplitude principle in the form which we need for

the proof of Theorem 1. Let w E C'(lR), ýp(t) = 0 when t < 0 or t > 1, f (t)dt =
0

1.

Theorem 3. The solutions of problem (10) can be represented in the form of

(13) V = u(x))-ikt + V

where u is the solution of problem (1) and for any a < oo, T > To(a) + 1, any N

and a = (xi..., a), the following estimates are valid for v1

T+I

(14) 1Ia0 J VleiktP(t T)dt•I _ Ck-', I=1 :5 a, k > 1
T

6
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vth constant C C(a, T, N, a, h) which does not depend on k.

Proof. With no loss of gener&'ity we can assimae that M• C f{x : Ix I < a). Let i be

a fuwction such that 0 E CaC(S), v5 0 when ITJ > a, h - on F. It is obvious

that the fuuctioa

(15) ,= 1(X)fl(t)C-i + W1 + W2

is the solution of the problem (10) if wi, j = 1,2, are solutions of the following

problems
atWj - AWj =- f C-ikt,, x E no, t 6 R

(I0) w-n~Lr = 01 t EIR; Wij= O, < 0

where

(17) A = f(z, k) +(A +k)

(18) f2 = f 2(t,x,k) = ( - 1)f - 0(.6" - 2ik#')

From (17) and (18) it follows that

(19) f(X, k) = 0 when zjx > a, axd Il L,(n,) -5 C(. + k2)

(20) as well asf2(t, x, k) = 0 when xI1 > a or t> 1, and 1Ih II L2 (Q) < C(. + k2).

It follows from (16), (20), Theorem 2 and Duhamel principle that

I.wI•,.,,1 <C(1 + k2)1IJ7(t)1, 1I- , X ->T + 1

where C = C(h, a, j, a) does not depend on k. It evidently follows from here that

for w2 thL estimate (14) is valid with any 2T > To + 1.

7
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Further, let w be the solution of the problem (11) with f = fl. Therc from the

Duhamel principle it follows that

tI

(21) =Ckt w(TX)Cikec -'kt ln ',kL rd
k• -k+i ' I

0 0

If Im k, > 0 the function

u(x, k1) = fw(, x)eik drd
0

belongs to L2(!Q) and is the solution of the problum

2Ak)Uf, X E 2; 'U =0.

We can now invoke the principle of limiting absorption which implies that

lira -- ui(x,k•)
a

where ul is the solution of the problem

This means that we can rewrite formula (21) in the following way,

00
to = 8 - -ikt wli J krx dr =

WN+ =C U,-e Ini W c

(23) = W, -+ .8f w(..)(r,z) aikrdr.II - k),+' -k)+

where Ix1 <_ a, t > To = To(a). For the second eauality when we integrate by parts,

we used the following estimate which is a consequence of (19) and Theorem 2

(24) 1J3O.wi < C(1 + k2)jI',(t)j, lJlx5 a, t > To.

INI



From (23) and. (24) it follows that for w, - e-iktu, the estimate (14) is valid for

any T > To. As we proved estimate (14) for ' 2 we have that

V=+

where v, satisfies estimate (14). It remains to note that from (17) and (22), it

fellows that Aumction u - ;b + u, is the solution 'of the problem (1). Thus Theorem

3 is pxoved.

We vill need the following simple lemma to prove Theorem 1. Recall that S(x)

is the distance between z and the boundary r and let

N

(25) VN e ~~~ aj (t, x)(ik)-j-
0

where aj are infinitely smooth ftnctio=9 of x E !f and t E JR.

Lemma 1. There exist ftmctious a• E Co, x E f, t E IR, such thai, for any N the

following assertions are Nadid:

1. -(O I)'N k- k!leikkSx) t)bN(t, X), where bN is an infinitely .rmooth futnc--

tion,

2. 2%1LIr = e-'•(fl(t)h + (ik)-N-1 aI ,

3 VN=OWhe-t<O,

4. The functions ai are independent of t when t > lXi + a +1.

Proof. This lemma is the outco:ne of standard AKB method [7], [4]. The

Hamilton-Jacobi equation which corresponds to the operator Olt - A is

2 -
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The function S = S(x) - t satisfies this equation. Heence the first asserton of the

lemma will Le satisfied if functions ai satisfy the transport eqaatioas. Let us 'write

them. Geometro-optic rays e which correspond to the phase function 0 are straight

rays whicxi are orthogonal to r. Let

X = =0 + + s, zo E r, S > 0

be equations of these rays. Here fi is the unit vector of the exteriur normal. It is

obvious that s = 5(x). The transport equations are the following

(2L)L + 9! +1(As)ai 21 A- •_•, j > 0.

Here
Oaa -= (f, Va), X E i.

The equations (26) axe linear ordinary differential equations along space-time rays

C , .={(to,xo) ={(t,x): x = o + is, t=to+s, 3 ?_ 01, zo Er, to G .

So we define the functions a% as the solutions of the equations (25) which sadsi.s

the following initial conditions

a0(to, o) = (0to)h(xo), a(to, xo) -_ (to,Xo), j > 0.

It is now very easy to check that not only the first but also the other assertions of

the Lemma are valid. This completes the proof.

Proof of Theorem 1. From Lenmiza 1 and well-known estixnates of solutions of

the mixed problem for wave equation [81 it follows that the solution of the problem

(10) has the following form
N

(27) V = eik(s(-t-)[E aj(t, •)(i)-'' + aN(t, X, k-)]
0

10
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where- N in arbitraly and

(2s) l~a Ck- c"'•-, k -1, IxI a, t < T + 1

for any a, s and some contant C = C(a, a, T).

How we fix a and choo.e 2' suc ihat

T > max(To + 1, 2a + 1)

where 2'0 is the constaut which is daemed in Theor'.m 2. From Theorem 3 it follows
tha•

T4- 1

(29) ( - ck: )V(t - T)dtf : C,•N, Ix a, k > 1.
T

Theornm 1 followc from (27) - (29) becutise the ifunctions a(x) are iodcpendent

of t whcn• Ix < u, an,-t > T.

We aow consider the asymptotic behavior of the fa- ield coefficient of the

solution in the case that the boundary value is independent of the parwneter k.

Theorem 4. If functiou h does not depeud on Ik, then function (2) has the following

asymptotic behavior as k oo

I ~~ +0(k-1)).

Remark. 1ý is not d1if.ict to write full asymptotic eao.-usiou of the function

Proof. The functicu F is defined by (2) in which the function Th is that given

iu the corollary to Theo:.'em 1. Asymptotic behavior of integrals of the type (2) as
f(OIc) .~hF1O) I/2(11~sI'~'~( ( 1

FL

|-" l l l Il l II



k -0 cani be obtained with the help of stationary phawe methodL In particlar

Theorem 4 will be obtained if we apply Theorem 9 of Chapter 4 fromi [4] to the

integral (2). Theorem 4 follows from these remarks.

III. Proof of the Main Theorem

From Green's formuda it follows that

/ Nfj'dO =-k-1 Im f u-dS.

Hence

CJif2d6 ýJiuýd+ j 10 dS] = !IJIhIII2.I I
It is obvious that relations (5) follow from hkerc.

Now let the function h from boundary value problem (1) be equal to k-1h,

where h. is defined in (6). Then h is indcpendent of k ,and Theorems 1 and 3 are

valid for this fumction h. iha particuiar from the corollaiy to Theorem 1 it follows

that

Th,(x) k2'h(x)= -ih(x)(I + 0(k4-))= (ik)-'h,(x)(i j. 0(k- 1 )).

Hence

II"!AIt l -IIheIL2(r)( + O(k'-))= (] ; g((?.)l e(x)dS)'(.. + k(k-)).

As the Jacobian of the mapping P is equal to 1-c(x) the last equality can be

rewritten in the form

1114,111 = ( j Ig,(e)l2dS)1 2 (1 + 0(k- 1 )).
Sr.-1
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This and the firsi of the relations (4) lead to (7).

As we already mentioned Theorem 4 is valid if h - k-h,. If we multipiy

boundary function h by k then functiou f is multiplied by k as well. Hence Theorem

4 is valid if h-= h, and- therd.fore

J fi2a(O)d- . J Ih4(P-1O)I2 1(F1-')a(9)d9(s + 0(k-1)).

From here and (6) we obtain

J f fJ'a(O)dO Jjg,(O)I2a(0)d9(1 + 0(k- 1)).

This and the second of the relations (4) lead to (8).

Thus, the main theorem is proved.
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A method for reconstruc4ing the shape of a bounded impenetrable object fromr mea-

sured scattered field data is presented. The reconstruction algorithm is in principle the

same as that used before for reconstructing the conductivity of a penetrable object and

uses the fact that for high conductivity the skin depth of the scatterer is small, in which

case the only meaningful information produced by the algorithm is the boundary of the

scatterer. A striking increase in efficiency is achieved by incorporating into the algorithm

the fact that for large conductivity, the contrast is dominated by a large positive imaginary

part. This fact together with the knowledge that the scatterer is constrained in some test

domain constitute the only a priori informadion about the scatterer that is used. There

are no other implicit assumptions about the location, connectivity, convexity or boundary
conditions. The method is shown to successfully reconstruct the shape of an object from

experimental scattered field datf in a "blind" test.
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I. INTRODUCTION

The present paper describes a successiul example of the reconstruction of the shape of a

scattering object from experimentally determined scattering data. In contrast with other
inversion methods, the reconstruction is accumplished from real rather than synthetic

data, so there is no chance of even inadvertently committing the "inverse crime" of using

the same numerical method in the inverrion algorithm as is used for solving the forward

or direct problem to produce the synthetic "measured" data. The possibility of favorably

prejudicing the outcome of the inversion algorithm was eliminated by a "blind" use of

the measured data in the inversion algorithm; that is, knowledge of the geometry of the

object from which the scattered field was measured was not supplied to those running the

algorithm until after the reconstruction was completed.

The reconstruction algorithm is that described by Kleinman and Van den Berg [1], in

which an iterative algorithm for the reconstruction of complex contrast profiles [2, 31 is

adapted to reconstructing the shape and location of a perfectly conducting scatterer by

making the assumption that the unknown contrast is essentially non-negative imaginary.

T he experimental data were obtained on the Ipswich Test Range of Rome Laboratories

[4.

II. DESCRIPTION OF riE METHOD

Assume that a two-dimensional conducting obstacle D is irra-diated successively by a

number (j = 1,-. , J) of known incident fields with the electric-field vector parallel to the
cylindrical object (TM-case). For each excitation, we then have a scalar problem and the

incident electric-field component is denoted as u7'c and the total electric-field component

ii denoted as uj. For each excitation, the direct scattering pr,_,biem may be reformuiated
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as the domain integral equation

L(X) uj(p) := ui(p) - GDXuj(p) = uji', p E D, (1)

where

whDxj(P) : I G(p, q)X(q)uj(q)dvq, p E D, (2)

"and
G(p, q) 11=(,)(k 1 j) (3)

Here, k is the wavenumber, X is taken to be equal to i(2 for real o ((- = ,/wr), and

p and q are two-dimensional position vectors. G(p, q) is the free-space Green's function

in two dimensions. GD is an operator mapping L' (D) (square integrable functions in

D) into itself. If S is a surface enclosing D then the scattered electiic-field component

U1• = uj - Ukn on S, is given by GsXuj where Gs is the same operator defiued in (2),

except the field point p now lies on S. Hence GS is an operator mapping L2(D) into

LI(S). "We assume that u!" is measured on S and denote by fj(p), p e 5, the measured

data for each excitation j, j = 1, -. , J. The conductivity reconstruction problem is that

of finding X for given fh, or solving the equations

GsXu•j(p) = fh(P), P E S, =,.,J, (4)

for X, subject to the additional condition that u-- and "- i -2 satisfy (1) in D for each j.

Specifically we use the iterative construction of sequences {ui,n) and {(,•} as follows:

Uj,n = Uj,n_, + n.y. , (Cn = c'._j + ,3,&, n = 1, 2,. (5)

For each n, the fuIctions Vj,, and ý, are update directions for the functions u-,, and (,.,

respective w .hile the complex parameter an and the real parameter 0, are weights to

be determined. The residual errors at each step in the state equation and data equation

are defined as

rn = •t ) n, - L U(,n7  Pjn h - ZGs,2ui,n, (6)

_____________X1___
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The consftanLs ac,, and A, are determined by minimizing the value of the cost functional
J J

Fi = WD 1 1irij,+D -I.- tos Z ] p+',,s (7)

in which
~ and WS I ~i (8)

where the subscripts S and D are included in the norm 11 in L' to indicate the domain

of integration. Substitution of Eqs. (5)-(6) in the cost functional of Eq. (7) results in an

expression involving terms determined at the (n- 1)-st step, the directions ýn and vj,,

and the two parameters a,, and A,. Once ý.he directions ý, and vpn are chosen, we have a

noulinear expression in .%, and &. The v&Aues of the parameters o,, and #n are determined

by requiring F& to be a minimum. Miuh'uization of the quantity Fn is accomplished by

solviag this non-linear problem in a,, and J3, using a standard conjugate 6.adient method.

The update directious vn and C,, are chosen as the Polak-Ribiire conjugaLe gradient

directious m in 11], nevnely

,-,+ •'v,,.-. and Cm = , +. 7.,-i, (9)

where

and (0
lln•",-l I1•

and the gradients are brven by

93• .

and

""= 2 IM ws sjn-1I U n (12)

j=
The operators UD and G5s are the adjoints of GD and Gs, respectively, mapping L(D)

and L(S) into L(D).
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The initial estimates uj,o and ýo are chosen as iu [1] to be

u,,o = u + GDWI,o (13)

where
•]< fk,,,rZ.5fks >s

o= _- Z isf , (14)
E llGs-dsfkJI2s

k=1

and ( _ { im[ws,o•.y,o] }2

j 1 1 (15)

III. EXPERIMENTAL SETUP

Here we describe how the field scattered by the mystery object was measured and

calibrated for the reconstniction. The measurement frequency was 10.0 GHz, thus the

wavelength (A) was 3 cm. Bistatic scattering measurements were made in a plane perpnu-

dicular to the axis of the cylindrical object, 30 cm (10 A) in length and the measurement

plan intersected at, mid leuth. For convenience, a Cartesian coordinate system was ori-

ented with z along the cylinder aw'ds, and measurements were made in the (x, y) plane.

The measurement coafguration is shown in Fig. 1. The scattered fields were collected

for incident angles of 0' = {0, 5, 10, 15, 20, 45, 60, 90} degrees, over the observation sector

0 < 0 < 359.5e with a sample spacing, AO4' = 0.5P.

The object and transmit antenna were fixed for each 0' and the receive antenna was

rotated on a semi-circular arc about the object from back scatter to forward scatter record-

ing the total field coincident with the receive antenna polarization. A seccnd measurement

was made with the object removed. This background field measurement was subtracted
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from each of the total-field measurements to obtain measured data proportional to the

scattered field. The range from the transmit antenna to the object was 3.7 m and the

range from the object to the receive antenna aperture was 2.8 m. Both the source and the

probe antennas had circular apertures 15.24 cm in diameter. With these measurement

ranges and antennas, the object illumination was uniform in magnitude to within 0.2 dB

along the z direction and 1 dB along the z direction. The illumination phase taper over

the object was approximately 10 and 500 in the z and z directions, respectively. We note

that both the end sides (z = ±15 cm) of the finite cylindrical object were illuminated

quite strongly and therefore one might expect the measured scattered field would contain

an imdesirable diffraction from the edges of the end sides. However in this experiment the

planes of incidence and observation were always normal to the z axis, which insured that

the scattered field was dominated by the specular response and the diffraction from the

two truncating sides, being much less, was not observable. Thus, the measured scattering

from the finite cylindrical object was very close to that from an infinite cylindrical object.

The measurement system used can only scan over a 1900 bistatic angular sector. This

means that in order to get scattering data over a complete 360* bistatic observation sector,

two measurement runs had to be made for each incident direction, one measurement

run to cover the observation sector, 0' - F50< ' :5 <& + 1850, and the other to cover,

0'i +- 1750 < €* < ,i< + 3 650. The data from each me-arenment run must be iaiepenoently

calibrated and then spliced together to make a complete data set. In this experiment

coverage of the first observation sector for every incident angle of interest (except ' = 0),

was accomplished by measurements made in March 1990 . The second observation sector

was obtained for all incident angles of interest (except •' = 90'), by measurements made

in October 1991. The instrumentition radar used in the October 91 measurements wS

more sensitive than the radar used in the March 90 measurements so that the March

90 portion of each complete data set had an uncertainty significantly greater than the

-
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October 91 portion. In addition to a variable uncertainty each data set contained a

sector of completely erroneous scattering centered about the back-scattering direction

(€- 50 < € _< € + 50) caused by the interruption of the object illumination when the

receive antenna passed between the transmit antenna and object. For each measurement

run we filled in the erroneous back-scattering region by extrapolating the complex data

on 0i + 50 _< 01 _< 0' + 1850, using a least squares linear prediction algorithm [5].

The raw scattering data resulting from the phasor subtraction of the total-field and

background measurements, has a magnitude proportional to the object scattering cross

section per unit length, and a phase proportional to the phase of the scattered electric

field referenced to the center of rotatiou of the bistatic positioner. Aligning the object

so that its symmetry axis coincides with this rotation arxis is practically impossible. Our

[ calibration procedure must compensate for the phase error caused by this misalignment

in addition t3 calibrating the magnitude. We calibrated the scattering from the object

by the following procedure. We computed a point calibration phasor,

2X P P() (.16)

In (16), P'' (q,) is the measured scattered pattern of the object for a particular mea-

surement run, and P'•? (0$) is the far-field scattering pattern computed for an infinitely

long cylinde th-at approxitfates the present object, but with its symmetry axis at the

z axis. From the calibration phasor we conipute an average calibration factor, ifo, and

three constants, a, b, and c. The average calibration factor is defined as

i A €
S0 : 1 A + 0'+ 5'(17)

. where; N is the number of data points in the given measurement run excluding the

erroneous data in the 100 back-scattering sector. The three conutauts are determined

such that they produce the best fit (in the least square sense) to the expression,

arg [T (q5')] =a + bcos(Y' + c). 18)-

F ' . . l. . . . . . .i i . .. .. ..Il".. .. . ..Ii: - - . . . . '



BLIND SHAPE RECONSTRUCTION FROM EXPERIMENTAL DATA 8

This curve fitting step is needed to correct for the inisaligninent phase error (see (4] for

a more thorough discussion). With those four constants computed for each measurement

run the calibrated scattering cross section per unit length, v` (01), was calculated from

the relation,

a•J ')= PoP"' (0') exp {-i [a +bcos (,' + c)]) . (19)

In this way we have arrived at experimental data that belongs to the object with the

symmetry axis coinciding with the z axis. We note that this procedure was necessary,

because we have only angles of incidence in a quarter plane, and using the symmetry, we

can obtain scattered data from angles of incidence in the full plane. These experimental

data axe recalibrated for use in the invcrsion algorithm as described in the next section.

IV. RECON5TRUCTION

The measurement surface S is chosen to be a circle containing the test domain. We

assume that the radius of this circle is large enough so that the far-field approximation of

(4) may be employed, and the far-field coefficient is the quantity of interest so that the

dependence on the radius is removed. In that case the data may be written as

h (p) 20i exp(iklpl, f.O(p), (20)

and the data equation (4) may be replaced by

J exp(.-ik-. q)x(q)uj(q)dvq f7(k), P E S, (21)

where > is the'b.. it vector in the direction of observation and S now denotes the space of

thesc unit vectors, the uit circle. Further, a~(•) are the measured far-field data. In the

examples, we take from the measured far-field data the values at 36 angles equally spaced

around the object (the domain S consists of 36 discrete points In the experiments

- -I'- ~ - --- umium im
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only 8 excitations are carried out. The incident fields are approximated us plane waves

incident at an angle of 0, 5, 10, 15, 20, 45, A0 and 90 degrees wit, the x-axis, respectively.

To obtain scattered-field data. from iucideat waves distributed around the object, we take

"idvantage of the a priori information that the mystery object is symmetri, with respect

to the planes x = 0 and y = 0. Doing se we obtain scatteied-field datz. from 28 excitations

(J = 28).

We further have a priori infor-nation that the mystery object lies inside a circle with a

radius of 0.060 m and the frequency of operation is 10 Gliz. We ther-!fore will assume that

the object is located inside a test square divided into 63 x 63 subuquares of 0.002 x 0.002

m'. The discretized version of the algoriihm iis discussed in [1].

Calibration

"16 test the computer code, we first run the algorithm for synthetic data, obtained in

the well-known problem of scattering of a plane wave by a perfectly conducting circular

cylinder with oxigin at the center of the test square. We einploy the same angles of

incidence and data poin'.i as used in the experimental case. The analytic solution in

terms of Bessel functions has been employed. The datat axe denoted as

f A) = ) .i 1,... 28, 1= 1,. 36 . (22)

The -adius, a, of this circular cylinder is 0.0i5 m. The wavelength is A = 0.030 m, so that

ka = ir. We have seen that our scheme indeed reconstructs the location and the .hape of

a perfectly conducting cylinder by reconstructing the imaginary contrast at the boundary

[1]. However, the reconstructed contrast at the boundary becomes highly oscillatory after

a couple of iterations. The peaks appear to increase with the number of iterations and

it becomes difficult to choose the level value of the contour that estimates the boundary

of the object. The visualization of the boundary of the object is improved when we

impose an upper bound to the reconstructed contrast. If at some point in the iteration

--- - - -i - i --
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the reconstructed s, is larger. than. the contrast is replaced by . In our example

we take •, 1. Some surface plots of the reconstructed profile- (the imagiuaary part of

the contrat, Im[x] C2) from the synthetic data of the circular cylinder are presented

in Fig. 2. The result at 32 iterations has alsu been presented in Fig. 2a, where we: have

plotted the boundaries of the test domain and the contour lines ( = 1. The exact location

of the boundary of the object is indicated by the dash'3d circle. The asymmetry of the

choice of the incident angles of excitations is clearly visible in the -constzucted boundary.

We observe that the boundary is located with an error of the sample width.

Next we measure expe-rimentaly the scattering from a circular cylinder with the same

dimensions. These data are denoted as 1f'(1:), j = 1,..., 28, 1 = I,... ,36. To calibrate

an overall phase shift between the definitiou of the phase of the measurement data and

the one defined in the reconstruction scheme (and to some extent the anplitudes), we

assume that the measured signal is correct apart of a multiplicative complex factor and

enforce the data to be

f( ):C fj(pil), j =i, .28, 1 , '3 (23)

The constant C ib determined from the analytical data pertaining to this object by min.

imizing the deviation

J 36 28
IV; l'(P) - C fr(p)(P lls= iZlZ If(PI) -. Cf (1,31)!2, (24)

resulting in

36 26 25C = = •=... .,(25)
an .1 2a " 1

I I fl"1 42 11I ý If;,A612
j=1 21 =1

where the overbar denotes complex conjugate. After substitution of the resulting numer-

[J ______________
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ical value of C into the deviation of Eq. (24), we found that

=0.079, (26)

that is, a mean square deviation of about 8 %. Using these recalibrated data, we fan

the inversion algo:ithm. Some suxface plots of the reconstructed profiles (the imag;uary

purt of the contrast, Im[x] = ( 2) from these calibrated experimental data of the circular

cylinder are presented in Fig. 3. The result at 32 iterations has also beer presented in

Fig. 3a, where we have plotted the boundaries of the test domain and the contour lines

I= . The reconstruction from our experiimental data is not very different from the

reconstruction using the synthetic data.

Myste-.y object

Observing that our reconstruction of the circular cylinder was successful, we now

coatinuk. to reconstruct a mystery object from experimental data. The exp.eriment;.l data

from this mystery objec;t -',ere first multiplied with the complex constant C, computed

by minimizing the global deviation between analytical and experimental da.xa from the

circular-cylinder case. This ensures that an overall phase shift between the one defined

in the measurements and the one in the reconstruction scheme is corrected. 'We then run

the inversion ".1gorithni and the r•t.sull.s of the reconstruction are shown in Figs. 4 and 4a.

It c.f•arly shows that the mystery object is probably a strip of about a width of 12 cm

..uLd a thickness of less than or equal to 4 irm.

Finally, we sho, in Figs. 5 dnd 5a, the reconstruction in a larger test domain, divided

itto 63 x 63 siibsquares of 0.004 x 0.004 'n'. The result of the reconstruction, using this

coarser grid, ;s consistent with the previous result.

After this reconstruction, the mystery waz revealed to those running the reconstruction

-- 'I. "1 1 M
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algorithm: tbe. object is a. 10 A long (30 -in), 4 A (12 cm) wide and 0.106 A (0.32 cmn)

thick alumainum plate. Obviously, the cross-sectional dimensions of the mystery object

that. are obta~iaed from the; reconstruction results are very close to the real ones.

In order to show the quallity of the measurenieuts, we have c~omputed the far.-field

data of the infiniteiy long and infir~itely thin strip using the e'igenfunction expansions

described by Asvestas and Kleinmaa 161. In Fig. 6 we compare the comiputed results of

the strip withi the measured results of the plate for one incidence direction (0'i

Notice that the measured scattering from about 5" off baclk scatter ( 1' 5') to about

1 9 0 ' is noisier than th;ý remainder of the curve. The aoisy sector corre-sponds to

the measurements made in Marcha 1990. In. addition notice. thart the measured curve near

0- -'= 100, is flat and does noiL match thue exact, curve. This is the back-scatteriag

region that contains the extrapolated data-

V. CONCLUSIONS

Tb.L- pdper presents definitive evidence of. the effectiveness of the modified gradient

inverse scattering algorithm in reconstructing the shape of a perfectly conducting cylin.'

drical object of arbitrary cross section from scattered field data. In eaxlier papef!s it was

shown that tb,ý. algorithm .-,as effe~ctive in reconstructing the contrast of penc~trable,ý A-

jects, the boundary of impenetrable circular cylinders, and was stable wizh respect to

white noist. All previous tests were performed with synthetic., i.e. coraputer simulated,

scattceriag experiments and thus were not free from the possibility that they were tainted
by an "inverse crime" of some-how using knowledge of the scatterer to favorably inifluence

the reconstructioL. The present results show coniclusively that the algorithm will -yield

j a successful reconstruction when the data are obtained experimentally and the shape of

the objeýct was not known before the reconstruction was completed, thus removing any



I

BLIND SHAPE RLECONSTRUCTION FROM EXPERIMENTAL DATA -13

question that an "inverse crime", however inadvertent, was committed. These results

describe only one scattering experiment and additiovial experiments a.e needed, not only

to recoufirm the present results, but also to test the effecrivene is of the reconstruction

algorithm for penetrable scatterers.
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CAPTIONS OF FIGURES

Fig. 1. Schematic diagram of the automated swept-angle bistatic measurement system.

Fig. 2. The reconstructed imaginary values of the contrast from synthetic data.

,•w 2a. Comparison between the reconstructed bounda-y and the exact one (synthetic

dzta, n = 32).

Fig. 3. The reconstructed imaginary values of the contrast from experimental data.

Fig.. Comparison between the reconstructed boundary and the exact one (experimental

data., n = 32).

Fig. 4. T7e recc.nstructed imaginary values of the contrast of the mystery object (dimen-

siou of Lst 0.126 x 0.126 m 2 ).

.4" .4 he reconstructed boundary of the mystery object (n 32, dimension of test

domr•n 0.126 x 0.126 m2 .

t .ig .5 -7'..e r.c•onstructed imaginary valves of the contrast oi the mystery object (dimen-

1 sioa of test domainu = {0.252 x 0.25': in}

Fi .The recon-tv,,cted boundary of the mystery object (n 64, dimension of test

dor•.i =0.252. x 0.2,52 ra)

Fig. 06. Bi.tatic scattering >orn thit 4A strip illuminated 10' off grazing.
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Abstract

The present paper contains the low frequency expansions of solutions of a large

class of exterior boundary value problems involving second order elliptic equations

in two dimensions. The differential equations must coincide with the Helmholtz

equation in a neighborhood of infinity, however they may depart radically fro-n

the Helmholtz cquation in any bounded region provided they retain ellipticity. IR

some cases the asymptotic expansion has the form of a power series with respect

to k2 and k 2(Ink + a)- where k is the wave number and a i• a constant. In

other cases it has the form of a power series with respect to k2, coefficients of

which depend polynoraially on In k, The procedure for determining the full low

frequency expansion of solutions of the exterior Dirichlet and Neumann problems

for the Helmholtz equation is included as a special ca-se of the results presented

here.



Introduction and Formulation of the Main Results

Let P. be an unbounded do.raan in f' wvith compact inflinitdly smooth boundary

1'. let,
20

i,j=x 19a ..

be an elliptic operator of the second order (that is the matiix (aij(x)) is nou-

singular) with infinitely smooth coefficients in f2 and auj(x) real i,-alued and let A

coincide with ihe Laplace operator A in some neighborhood of infinity. Denote by

u, a solution of the problem

. 0, x I'(1)

where B is either the identity (Dirichlet boundary condition) or the following op-

erator

2u=- +p(x)T +q(x)u. (2)

Her• -a = • aij(x)n.r is the derivative along the conormal vector (n = (n", n2)

is the unit vector which is normal to 1 and directed into Q), -2 is the derivative

along r, p, q E C' . Finally denote by

Rku : 2)-+H 2 (f2), Ixnk > 0I

the operator which takes functions f E L 2($1) into solutions of problem (1) belonging

to the Sobolev space H'()"

With a an arbitrary constant we define a cutoff function X X(x) E C°(•),
Ssuch that X = 1 when lx l < a and X = 0 when Ix > a + . Then a restricted

In2a
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resolvent is defined as

IL 2 (f2) - H 2 (f2).

The operators hk, Rk are defined and are meromorphic functions of k when Imnk>

0. Moreover the operator Ak, Imk > 0, has a meromorphic continuation on the

Riema.nn surface of the function In k (see [15]). Let us stress that Af = xRkf if

f = 0 for IxI > a. In this case the function u = Rjf is a solution of (1) for IxI < a.

The present work is devoted to the study of the asymptotic beha•-ior of the

operator -Rk (that is of the solution u = f•f, 1:1 < a of the problem (1) with f = 0

for 1:1 > a) as k- --+ 0. We consider only the two-dimensional case, since in other

dimensions the asymptotic behavior of the solution of this problem is much simpler.

For example, if the dimension is odd the solution is meromorphic in k in the entire k

plane [see 15]. The two-dimensional problem was studied in [1] - [18]. In particular

the latest results were obtained in [16). There the problem was supposed to be

formally self-adjoint (i.e. (Au, v) = (u, Av) for functions u, v E CO'(-2) satisfying

specified boundary conditions) and nonpositive, or to be more exact it was supposed

that

(Au, u) _ -a J IVU12dx, a > 0 for all u E C•(C) with BuIr = 0. (3)

Here (..) denotes the inner product in L2 (12). For this case [161 gives the asymptotic

behavior of the solution u = uk of the problem (1) with accuracy O(k 2).

However more than ten years ago, in [15], there appeared results of one of

the present authors concerning the low-frequency asymptotic behavior of solutions

3
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of general elliptic problems of any order polynomially depending on the spectral

parameter. Those results apply to problem (1) and allow one to obtain the full

asymptotic expansion of the operator At as ---* 0. This exparsion has the form

k2 00 in k2
F.~ , j -)I" k P.., F[F jk<< 1, (4)

MWO an=O

where a is an integer, I is a non-negative integer, P is a polynomial with constant

coefficients, and P,., : L£(2) -. H2 (f2) are bounded operators independent of k.

This expansion is meaningful in the sense of the operator norm. that is

.S"% . k 2

< CIk-& C2s AVlD

where N is arbitra.ry, s = 1(.V - 1) and c is independent of k.

The integers a and I and the polynomial P are not Imown in Seneral, even for

equations of 2nd order. It is the purpose of the present work to specify the precise

form of expansion (4) for solutions of two restricted cases of problem (1).

Case I. The space of bo, rided solutions of the homogeneous problem

Au -0, zef: Bu=G. zEr (5)

cousists of only the trvial solution.

Case II. The srice of bounded solutions of (5) is one dimensional and if u is a

nontrivial solution then

lim U(:) # 0. (6)

4
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and the formal adjoint to problem (5) (see (16) below) also has a bounded solution

with property (6).

The exterior Dirichlet problem for the Helm.holtz equation is an example of Case

I while the exterior Neumann problem for the Helmholtz equation is an example of

Case II.

It is well known that if .; is a bounded solution of Laplace's equation in a

neighborhood of = then for r sufciently large. u has the form

u(X) = Co -4- F(a. cos nV, + b,, sin nV)r-" (7)
"MRO

In particular this representation is valid for bounded solutions of problem (5) and

of problem (1) with k = 0 if f = 0 in a neighborhood of infinity. Therefore,

condition(6) is equivalent to the requirement that Co # 0 for such solutions.

The conditions embodied in Cases I and II are less restrictive than those used

in [16]. If condition (3) required in [161 is fulfilled then together with (7) it follows

that there are only constant solutions of problem (5). This means that either Case

I or Case Ii apply. In our work we do not require nonpositivity, condition (3), nor

do we require that the problem be self axdjoint. Moreover we obtain not only the

5.rst few terms as in 116], but the complete asymptotic expansion of the solutions.

Unlike [16] we consider (for simplicity) only the problems in which the boundary

and coefcients of the equation are infinitely smooth.

The main results are contained in two theorems which are presented in this

paper. Let a be an arbitrary fixed constant such that I' is contained in the circle

5



IxI < a - I and f = 0 when [xj > a. Let f2 = l n {x : jxJ < a} and A = A when

Jxj > a- 1. Let L2.. be the space of functions which belong to L2(0) and are equal

to zero when Ixj > a. In particular, f E L2,,.

In Case I we denote by u0 , uI, ,u2 the solutions of the problems

Auo =f, x E SI
B' o -=-0, z eF; luo] < ooasr--.-,o (8)

Aul = 0, X c S;(
t Bul =0, x E r; Jul-1rI< ooasr-.o(

fAu2 • . A2-0 -G§ (10)
3u 2 =0, x Er; JU2 + lai -I+ IbIT21 < oas r --- (10

where a,, b, are the coefficients in the expansion (7) for u0 . We will show that the

uniqueness of the solution of problem (8) leads to the solvability of this problem.

After we have established this, we can easily infer the unique solvability of problems

(9) and (10) by reducing them to problems of the form (8). This is accomplished by

writing the solutions ul and U2 of problems (9) aud (10) in the form ul -= lur + wl

and u2 = -. ½(aixi 4 bI?2)0 + W2, where 0 = O(x) is a cutoff function which is

equal to one for I-j > a and equal to zero in some neighborhood of r. Then the

problem of finding wi is of the form (8). Moreover since the expansion (7) is valid

for wi, in particular the constant

Ao = lim (ul - inr) (11)

;.s defined. Finally, we denote by -3 the constant which occurs in the asymptotic

expansion of H~l)(z), the Hankel function of the first kind and order zero:

=M (Z) (ln_ q) + ,Z2lnZ), Z~ 0.



With this notation established we now state the main results.

Theorem 1, In Case Ifor the solution u --Rkf of problem (1) with f E L2.o, the

following asymptotic expansion is valid when - M < argk < L, I-i 0:

N m m--n+l

U = E Z: E k2 lnhiuk(kak - Ao ý)PIu,-,-(X) + UNi (12)
m=O n=Q p=O

where uvn,n,p(x) are independent of k and

jjljvljjp(n.) <5 ¢(a)jk'lzkjN+'llfjll,,.. (13)

The leading termr of the asymptotic expansion have the form

Co - ,ui(x) + k2 lnku2 (x) + O(k 2) (14)

where uO,u 1 ,u 2 are the solutions of problemt (8) - (10) and Co = lim uo(z).
r-00

Remark: In fact the corresponding expansion for the operator R& converges in the

operator norm for 9 < IkI < 'k0o for some Ikol > 0 and therefore the infinite series

for u(N - oc) converges ij H2 (f2.).

In Case II let us denote by vo the solution of problem (5) such that

lam vo(x) = 1. (15)

Let the problem

Au =O, z E !2;, Bu =0, xEr (16)



be formally adjoint to (5), that is, the operator A* can be obtained from A by

substituting bi for bi and e - • for c. If B = I then B" = I, if B has the form

(2) then B* has the same form with p instead of p and -a- - 4+ i(x)ni instead

of q. If u, v E C•(t)), and Bu = B*v = 0 on r then

]Aufdx=uA~vd+ ] V - uT-)dS, R > a. (17)/.f=f -xvz f 195r r
92 t n• R r• a

We will show that the space of bounded solutions of problem (16) in Case II is also

one-dimensional and there exists a unique solution v. of problem (16) such that

Urm v.(z) = 1. (18)

Let us denote by v, the solution of the inhomogeneous problem (5) (that is the

solution of problem (1) with k = 0) such that

v, - a(inr - )-0 as r - oo (19)

where a = a(f) is constant. We will show that in Case II such a solution exists, is

unique and

a a /fi.dx (20)

Theorem 2. In Case llfor the solution u = A]f of problem (1) with f E L2., the

following asymptotic expans~ion is valid whken -1 < argk :5 L-, RI - 0
N 2m~l

U E k2 mlln~k um,.n(x) + ZN (21)
m=O n--

8



where u,,, are independent of k and

jIUIIHj2(n.) -• C(a)lk 2 V+21n2N+3kIj1fIIL 2., (22)

The leading termS of the asymptotic expanilon have the form

U =rlakvo0(X) + V1(X) + O(k 2ln3k), jIl - 0 (23)

where a ij defined in (20).

If v -1 then U,.n= 0 for n > m +.

Remarks.

(1) The remark following Theorem I also applies here.

(2) It is not difcult to write out the sequence of problems similar to (S) - (10),

from which we can find all the coefficients in the expansions (12) and (21).

(3) In the present work we have assumed thxt the data f is independent of k. In

many applications, of course, f will be a known function of k. In such cases

when f m~y developed in a series in k the present analysis will still apply. The

result will be the product of the expansion of the inverse operator, RA, with

the expansion of J.

9i
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II. Proof of the Theorems

Let us denote by 77 a particular function which is infinitely smooth, equal to
zero for jxj < a - I and equal to one for IxI > a - ½. We will assume that a product

of any function in Q2 by r or by a derivative of 77 is defined in R2 and is equal to

zero in IR 2 \!2 (where 77 = 0). For any smooth u let us denote by g the following

function

g(u) = g(u)(x) = uA77 + 2(Vu, V77), X E R2. (24)

It is obvious" that the support of this function belongs to the annulus a - 1 _< Ixi _<

a - . We will denote by * the convolution in 'R2.

We need the following three lemmas in order to pove Theorem 1.

Lemma 1. For the jolution u = Rkf of problem (1) and x E R2 there are the

following representatiorn:

77u= - ¼.o1)(kr) * g(u) if f E L.,_,. (2_5)
,Tu = - •H;l(kr) * [g(u) + ,f ] if f E L2 G. (2L2)

Proof. Since .4 = A for jxj > a - I we have from (1) that (A + k2 )u = f for

lxI > a - 1. Therefore

(, + kc),7u = g(u) + 77f, x E R2

where the right side has compact support and r7f = 0 if f E L2,4 -I. Representaticns

(25), (25') follow directly. This establishes the lemma.

10



If we replace H1')(kr) in (25) by its asymptotic expansion as [kl -0 0. for r

bounded we obtain the following:

Corollary. If f E L 2,.-, and 1kl -• 0 then

7 = [-(lnk + Inr - A) + 0(k'lnk)] g(u) (26)

and also

7u= [IT(lnk + mnr - 13) 1 "k'lnk + 0(k')] * g(u). (27)
7r 87r

Next we establish the solvability of problem (8) which as discussed previously also

ensures the solvability of problems (9) and (10). Moreover we also provide the

leading term in the expansion, (4), of the solution of problem (1).

Lemna 2. In case I problem (8) is solvable and the following expan2ion is valid

for the solution u = Rkf of problem (1) with f E L2,.

Co
u = 0uo + k - AO -•U(x)+ Okn), , k ... 0 (28)

where uo, u1, Ao, C o, 0 arz the same as in Theorem I and -y i an integer.

Remark: The form (28) is based on the general expansion of the inverse operator

(4) and hence the order symbol is used in the sense that

11tL - uO. - COU, 1 11~ <5 clk2ln-'kllj.f1IL2O..Ink- Ao -,3

The order symbol for solutions is used in the same sense throughout.

11
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Proof. From (4) it follows that

L=ink2 + O(k 2'+2ln-'k), z E fn., k -- 0 (29)L(lnk)+

where s is an integer (not necessarily positive), L is a polynomial with constant co-
efficients and Q is a polynomial, not identically zero, whose coefficients are functions

of X.

It is convenient here to assume that f E L 2,.-, but not L 2,,. Since a can be
chosen as large as we wish, this is not an additional restriction. Let us prove that
S = 0. Taking the limit in equation (1) as k -+ 0 we can see that s cannot be
positive. Let us suppose that s < 0. Then by equating coefficients of k2" in both
sides of equation (1) it follows that the function w satisfies

Aw = 0, xEQ,; Bw = O, x E r. (30)

On the other hand putting (29) in both sides of the equality (26) and equating the
leading terms which contain the multiplier k2, we obtain

77w= (Ink + nr -,3) * g(w), z E Qo (31)

Since the right side (31) de- pends on values of w only when z E Q. formula (31)
allows us to continue the function w to the whole domain !Q. As a result we obtain

the function w in 1 which satisfies (30) and

7w I (-(Ink + nr -/) g(w), x E Q. (32)

12



Since 7 = 1 and g = 0 for r > a- ½ we have from (32) that Aw = 0for r > a -

From this and (30) it follows that w is a solution of problem (5). On the other hand

from (32) it follows that

w - c(k)(lnk + Lar-,) -- 0, as r - oo (33)

where

c(k) ='fg(w)dx. (34)

Since w - • for x E 1Q. and w is defined by (32) for r > a there exists an integer

v and functiors w0, w, of x such that w0 0 0 identically and

W = Wr0nIZk + w1 1n"-lk + O(ln"-2 k), k -+ 0 (35)

Obviously wo is a solution of problem (5) because w is a solution. On the other

hand putting (35) in both sides of (32) and equating the leading terms (of order

ln.u+lk and n.'5 k) of the asymptotic expansions, we obtain

0 Jg(wo)dx (36)

77wo (nr - )g(wo) + 2 g(wl)d (37)
Tm2

From here it follows that w0 -- constant as r -- 0o. Therefore w0 is a bounded

solution of the problem (5) and it must be zero. This contradiction proves that

s=-0.

Having established that 9 = 0, the same argument can be repeated, with - -= 0,

to show that w x , EE f can be continued to all of El and (32) - (37) are fufilled.

13



However w is now a solution of an inhomogeneous problem (problem (1) with k = 0).

Since w has the form (35) and is a solution of problem (I) with k = 0 we may take

the limit as k --4 0. This process produces a contradiction if v < 0 (i.e. 0 = f).

Hence v _> 0. If ;, > 0 we multipy bcth sides of the equations by in-'k and again

take the limit as k --+ 0. We find that wo is a solution of the homogeneous problem

(1) with k = 0. In addition we may conclude that wo is bounded using the same

azguments used previously (c.f. (36) and (37)). Therefore wo must be equal to zero.

This shows that v = 0 and Wo is a bounded solution of problem (I) with k = 0.

This means that w0 = u0 and therefore the existence of the solution u0 of problem

(8) is proved, hence, as noted previously, the solution ul of problem (9) also edsts.

Now recall that we have the expansion (29) with s = 0 in which the function

w = is a solution of problem (1) with k = 0 and satisfies (33) and (34). Then the

function w - c(k)ul is a solution of (1) with k = 0 which tends to c(k)(ink - A0 -t)

as r -- oo. It means that wo - c(k)ul = uo and c(k)(Ink - A0 - 6) = Co which can

be solved for c(k).

Thus we have shown that

u = wo + O( 2 ln'lk) = uo + c(k-)ual + O(k 2In'k).

With the formula for c(k), (28) is established and Lemma 2 is therefore proved.

Remark. Since w0 = uO it follows from (36) that

Sg(uo)dx = 0 (38).

Lemma 2 gives the two leading terms of the asymptotic form of the solution

of problem (1) in Case I. It is possible to obtain higher order terms in the same

14114



way. In particular one can show that -y in (28) is equal to one. However this result

is a direct consequence of the complete expansion (12) in Theorem I which will be

proven below. In order to specify the first three teims of (12) the general theorem

yields a result of the form (14). To complete the proof that the coefficients in (14)

are solutions of (8) - (10), we will need the following.

Lemma 3. In Case I if ta.e constant y in (28) is equal to one then the ajymptotic

expanzion (14) ij valid.

Proof. If -y = 1 then from (4) and Lamma 2 it follows that

u =uO + C 111 (X) + k2inkU2 (X) + k2 U3 (X) + 0(k'2 ln-•k),Ink: - AXo-/

x E 2,0 , jkj - 0 (39)

where uO and u, are the solutions of problems (8) and (9) and u2(x) and u3 (x) are

functions independent of /. It remains to show that u2 is the solution of problem

(10).

Let us substitute (39) into (1) and equate terms of order k2 lnk to zero since

there are no such terms on the right hand side. We then have

{ Au 2 =0, x E 2.;
Bu2 .=0, x• r.

Further as in the proof of Lemma 2, we can assume that f - L2,.-I. Now substitute

(39) in (27) and equate the terms of equal order. In particular there is only one

term of order k2ln2 k and its coefficient must therefore vanish. Hence

0 g(u.2)d.x (40)
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Equating the terms with k'lnk we obtain

1 1 121r
77U2 = T(:nr - 3 (U2) - -r * g(UO) + I g(u3)dz, (41)

JR2

As was done in the proof of Lem~ma 2, we can use (41) in order to continue the

function u2 on the entire domain ý2. The extended function u2 will be a solution of

problem (5) and, will satisfy (41) for all x E 0. This is proved exactly as was done

in the proof of Lernma 2. To complete the proof of Lemma 3 it remains to show

that u-2 has the same asymptotic behavior when r -+ oo as in (10).

Since it follows from (40) that the first term of the right side in (41) decays as

r 0 oo it is enough to check that

112r * g(uo)- aix, -bIX 2 1 < C, r --+ o0.

We have,

r 2 g(uO) = J j,- lg(uo)dy = r J g(uo)dy+7,112
JR2 .1•2

-2x, ylg(uo)dy - 2X2 f Y2g(Uo)dY + J jy12g(Uo)dy. (42)
R2R2 JR2

According to (38) the first term in the right side of (42) is zero. Since the last term

is constant it remains to show that

I•L fzg(uo)dx = al J X2 g(Uo)dz = bi. (43)

R 2

Since f E L2 ,.-. and A = for r > a - 1 it follows from (8) that Žt 0 = 0 for

r > a - 1. Therefore (see (24))

g(XU) = (0uo)

16



Further, according to (7), we have

uO = Co + a, j + b, sn +O(r-2), r -- o (44)
r r

where tan Vp = H. Hence for R > a we have, with Green's thturemi,
2Wr

/xig(uo)dx= fTzA(77uo)dx = 1-R 03ý U R cos,ýuoIiR)dO
r<R r<_R 0

Taking the limit as R o o o and also taking (44) into account we obtain the first

equality in (43). The scond one zan be established in the same way. Thus, Lemma

3 is proved.

Now we may proceed to the proof of Theorem I.

Proof of Theorem 1. Let E CO(Q), 1 - for r > a-, 0 in a

neighborhood of r. Let us denote by U the operator which maps the righthand side

into the first two terms of the solution of problem (1),

CoU: zL2,(2) --. HIo(±), Uf= uo +nk- A0 - (45)

where u0 and ul are the solutions of problems (8) and (9). Further let us denote

by D. the following operator (parametrix of problem (1)):

D : L2,, -- H2.(nŽ) (46)

h= (Uh)(1 - 77) - LHO)(kr) * (g(Uh) + 7h)], h E L2,. (47)

Let us prove that for any h E L2,a function 4kh satisfies the following relations:

(A + k 2 )Ikh=h+Tkh, xE!Q (48)
B-I)Ah 0 , x E r

17
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where Tkh C; L., and

,lTjkhIz,.. __. CIk~h' a lllz (49)

Multiplying both sidet of (25') by C and t.king into accoumt that Cri - we have

i L( H."H(kr) 0 (g(-Rk) +4- iih)]

Hence the following identity is valid

Akh _ (Alh)(1 - () - yt- (kr) •((Rkh) + i7h)] (50)

This allows us to estmate the difference Okh - Rkh. Using Lemma 2 and (24) it

follows that

l(A~kh - Uh)II(n.) < Clkt2n)kI 1hJlL-.., Ik-" 0 (51)

and

[ig(Akh) - g(Uh)jjL,,. < C. kfl"kijilhiIL,., IkI 0 (52)

Moreover it is obvious, that for any f e L2.,

S-H(kr) flirt'. < CI•nk1IIfIL 2.. , Ikj -- 0 (53)

Subtracting (50) from (47) and estimating the right side of the result with the help

of (51) - (53) we obtain

It@kh- RkhIIH2(n.j < C.i k2t&÷1 kIIlhIIL2 , Ik 0

18



and therefore

II(A + k2)Oih - hilLC,.) < ¢jk2 ln'÷' kiI1hilL 2.. , kIj - 0 (54)

Further for r > a - I the following relations hold

--=(=l, A=a, g=O.

From these relations and (47) it follows that (A+k 2 )Okh = h for r > a- . Together

with (54) it follows that Tkh E L2,. and the estimate (49) is valid. Finally, since

77 = 0 in a neighborhood of r it follows from the boundary conditions of

problems (8) and (9) that the function (47) satisfies the boundary condition (48).

Thus the relations (48) and (49) are established.

Now we look for the solution u =.Rkf of problem (1) with Imlc > 0 in the form

u = --- kh with an unknown function h E L2,1 . It is obvious from its construction,

(47), that 'ý%h E H 2(n") if Imk > 0. Hence, Rkj = 4(kh if the function §kh satisfies

the differential equation and the boundary condition of problem (1). According to

(48) both will be satisfied if h + Tkh - J. Therefore

Rkf = 4k(I +Tk)"'f, Imk > 0

and hence

Zkf = x'k&(. -- Tkr)-'f, f E L2 ,. . (55)

where X is the cutoff function introduced in the definition of Rk. Let us recall that

according to its definition, the operator U has the following form

U =UO + CO ,UC0 U•(56)•/= U +ink - AO -/13

19
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where the operators Uo f -- uo, Ui f - ui transform the function f into the

solutions u0 and u, of problems (8) and (9) and the operators UO and U, do not
depend on k. Further from the asymptotic expansion of the Hankel function as
Iki -- 0, which in fact is convergent, it follows that for f E L2,, and Ikl sufficiently

small

(k)* f] = [Z j + Ink E 2 3] (57)j-O j=,O

where A j, Bj :L 2,. -- H2,€(S1.) are bounded operators. From (56), (57) and (24) it
follows that the operator Oj;, (46) and (47), has the following convergent asymptotic
expansion for Jkl sufciently small

0000 
00t--- 2jm(1) +IkE+ 1 E()

j-O

where t! : L2,. " Ho.(f2) are bounded operators, j = 1, 2, 3. In (58) there is no
term with coefficient $O2) because

(•2 N/ C2 g ( uo ) d x
0 -27r

and this function is equal to zero due to (38).

Since

Tk = (A + k2)Tk - I: L 2,, L2,,

with (58) and (49) it follows that, for Ikl sufciently smanl

00 00 1 00

=~~~~ +j 0~T 1  + En j.2T 2  +~(
j=1=1
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.-.rhere Tf: L 2.9 -' L 2,a are bounded operators and s 1, 2, 3. From (50) we have

+(I±TTF1  = E(Tk E k mlnnk, - 0 - T~~

m-=O n+p0O

The representation of the solution, (12), the estimate of the remainder,. (13), and

the remark about convergence of the series are all obvious consequences of this last

formula, (55), and (58). The expansion (14) follows from (12), (13) and Lemma 3.

Theorem 1 is therefore proved.

Now we pass on to the proof of Theorem 2. First we establish two additional

lemmas.

Lemma 4. In Case II the following three ajsertionj are valid:

1) The space of bounded solution.w of problem (16) is one-dimentional.

2) There ezis•s a unique solution v. of problem (16) for which condition (18) is

fulfilled.

3) Problem (1) with k = 0 and f E L 2., has at most one solution v, with a•g•mp-

totic behavior (19) at infinity, and if it exrisfs then the corstant a in (19) has

04ecform (20).

Proof. Obviously we can assume that the origin of coordinates belong. to the

domaiai 1 2 \n and there exists r 0 > 0 such that the circle of radius ro belongs

entirely to this domain. Let f2, t' be the images of si, r and A, A•, B and B° be the

images of A, A', B, and B* trder the mapping r -- r :-!. Let

r-2 AU =0, X E $; jU =0,: X Cf; (60)

I * 21



r =2 AU 0, X e f = oxe (61)

be the problems obtained from (5) and (16) respectively as a result of this mapping

and multiplication of the equations by rj". The presence of the factor r"2 allows

us to prove that problems (60) and (61) are adjoint. The proof follows. Since the

Jacobian of the mapping is equal to ri-2 it follows from (17) that

J(iU)ijf2dX Ju(Alv~ri2dx (62)

for any u, v E CO(1I) such that u - v = 0 in some neighborhood of the origin and

ju = Bv = 0 on f. Since A = A* = A in a neighborhood of infinity we h&Ve that

r-2. , = r'2.j" = A in a neighborhood of the origin and the folowing two assertions

are valid: 1) problems (60), (61) are elliptic problems with smooth coefcients, 2)

equality (62) is valid without the assumption that u = v = 0 in a neighborhood of

the origin, that is, problems (60) and (61) are adjoint.

Since the coefcients aij of the operator A are real, problem (60) is homotopi-

cally equivalent to the Diricblet problem (if B is the identity operator) or Neumann

problem (if B has form (2)) for the Laplace operator. Therefore the index of prob-

lem (60) is zero and the dimensions of the spaces of smooth solutions of problems

(60) and (61) are the same. Since the original operator A and its adjoint coincide

with the Laplacia-.- ina neighborhood of infinity, inversion establishes the one-to-
one correspondence of the space of bounded solutions of the exterior problems (5)

and (16) with smooth solutions of the interior problems (60) and (61) respectively.

Therefore.the dimension of the space of bounded solutions (5) and (16) is the same.

Thus, the space of the bouided solutions of problem (16) is one-dimensional (as it

22



is for problem (5)). The first assertion of the Lemma is therefore proved.

Since we suppose that problem (16) has a solution with property (6) (the second

assumption for case II) the second assertion of Lemma 4 follows from the first one

and formula (7). Finally we prove the last assertion of Lemma 4. From formula

(17) for functions v, and v., we have

f,.dx= J. - v1 T dS, R> a (63)
VA~ ruzj

Since Avi = Av. = 0 for r > a - 1 the expansion (7) is valid for the functions

vi - a(inr - /) and v.. Note that according to (19) the constant Co vanishes in

the expansion (7) of the first of these functions. These facts lead to (20) if we

take the limit in (63) as R -- oo. The uniqueness of the solution v, is an obvious

consequence of (20), (19) and (6). This completes the proof of Lem.ma 4.

Lemma 5. In case II problem (1) with k = 0 and f E L2,, h4 a solution VI with

ajymptotic behavior (19) at infinity (which i. unique according to Lemma 4), The

following ezpansion aw k --* 0 iu valid for the solution u = Rkf of problem (1) with

f E L2,.

u = (cknk)vo + v1 + 0(k 2In" k), x E S,, k -+ 0 (64)

where a ij given by (20) ani - is: a con.itant.

Proof. From (4) it follows that
2,= Q(lnak) + Q(k2,+2lnk), X E f, I -. 0, (65)

L(Ink) (5

where Q and L have the same form as in formula (29) and v io some constant. As

was done in the proof of Lemma 2 we deduce first that s < 0 and if j < 0 then the
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function w = X, X E Q, can be continued on the whole domain .'in such a way
that w is a solution of (5) and satisfies (33). Hence the difference w - c(k)ln.kvo is

a solution of (5) and satisfies (19) with a = c(k). From the uniqueness of v, which
was proved in Lemma 4 it follows that w - c(k)lnkvo _= 0 and & = c(k) = 0. Hence
w - 0. Therefore, s = 0. Now we can repeat all the arguments concerning w and
we obtain the expansion (65) with s = 0 in which the function w is a solution of the
inhomogencous problem (1) with k = 0 and (33) is fulfilled. This means that the
function w - c(k)lnkvo is a solution of problem (1) with k = 0 which satisfies (19)
with a = c(k). We simultaneously obtain the existence of ul and the expansion

(64). Lemma 5 is thus proved.

Finally we are in a position to prove Theorem 2.

Proof of the Theorem 2. In order to prove the theorem we have to repeat
almost word for word the proof of Theorem 1 replacing Lemma 3 by Lemma 5 and

the operator U by the following operator

V : L 2.a(n) --' IHlo(f2), Vf = alnkvo + v,

where vo satisfies (5) and (15), vi satisfies (1) with k = 0 and (19) and a is given
by (20). Instead of (56) we have to use the formula V = alnkV0 + V1, where
Vof = vo, Vif = vi. Therefore in place of (58) we obtain, for Jkj sufficiently small

00 00 cc
04(1)~" +Ink Zk2j,0.2 ) + n2k 1: k2jt&3) (66)

jM0 jM o

J " Oj -O * ,,1

In place of (59) we have

C0 00 00
= T 1) + Ink 1: k2'T~2 + In'k j ~Tj) (67)
jml jj= i-i
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and
00 

2M

(1 + Tk)-' = V -k2 InfnkTm,,. (68)
miO n0O

Expansions (21) and (22) follow from (55), (67) and (68). Formula (23) is a conse-

quence of (22) and Lemma 5.

In order to specify the leading terms, (21) for the case V0 = 1 we must slightly

change tht operator C,. We add the term (k 21a2k)Q to the operator Ok, (47),

where
Q (C-- 2)

87r [r' *g(vo)], vo1.

and a has form (20). It follows from (24) that g(vo) =At = A(77 - 1), where

77 - 1 E Co. Hence

Qf of((-8 I) [r' * A(r/- 1)] = ( A• I)[2 * (r- 1)] = onst.- (C- 1)

8~r87

Hence the function Qf is constant in a neighborhood of r. Since Qf is a multiple

of v0 in a neighborhood of the bounda.ry and vo satisfies the boundary condition

of problem (1), Qf also satisfies this condition. Therefore the addition of the term

k'2la 2 kQ to tL does not change of the steps of the proof of the theorem, but it

does change the coeffcients in the expansions (66) and (67). In particular it is not

difficult to check that the operator T(3) which defined the leading term in (67) and

had the form

T =3 f =,A{- * g(vo)]}
87r

now has the forma

TJ(3) = _-A4r'2 g(vo)), v, =.

25
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But it was shown that the convolution in the last formula is constant. Hence the

operator Tý3) is equal to zero and instead of (68) we have

(I+Tk) Y Z+ mnm0vnO

m=D n:=O

This leads to the desired form of the expansion (21). Theorem 2 is therefore proved.
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Abstract-Kelvin's well-known and Neumann's lesser known image theories for the sphere,
valid for static sources outside the sphere, are extended to low-frequency current sources
involving a nondispersive dielectric, by expressing known field integrals as arising from
suitp.ble image currents. The image of a radial current element Is seen to consist of a radial
line current between the center of the sphere and the Kelvin point plus a dipole at the
Kelvin point. The image of a transverse current element is a combination of a transverse
current strip plus i. radial bifilar line current between the center and the Kelvin point.
These image currents can be interpreted as image charges of the corresponding static
problem in harmonic motion. The theory is tested by knowu limiting cases.

I. INITRODUCTION

The well-known image theory of electrostatic charges outside a perfectly conduct-
ing sphere was originally introduced by William Thomson (later Lord Kelvin) in
one of his first studies as a young scientist in 1845 [1]. Kelvin's image theory
has since then been applied to problems of electrostatics, magnetostatics, and
DC current problems involving perfectly electrically or magnetically conducting
bodies with most recent contributions published in the present decade [2,3].

Extenmion of Kelvin's theory to material spheres did not seem to have had a
successful solution before a paper [4] of 1992 by one of the present authors for the
dielectric sphere in electrostatics. However, it was recently found that a similar
solution was given already in 1883 by Carl Neumann in an appendix of a book
on hydrodynamics [10]. Obviously, the solution has been dormant for more than
a century and mcst probably was never elaborated beyond its introduction on a
couple of pages. The solution will be referred to as 'the Neumann image' from
now on. After its rediscovery, the theory has been extended to magnetostatics [5],
layered dielectric spheres [6], an, two separate spheres [7). Also, chiral and bi-
isotropic spheres have been solved [8] in terms of image theory as well as sources
inside the sphere [9].
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In the electrostatic image theory of dielectric sphere the image of a point charge
was seen to consist of a point charge plus; a line c.harge witb a simple anavlytic

power-law expression, readily accessible to small-scale computation [4]. In terms
of this theory, many problems involving sphes can be formulated in a simple
manner with lie image sources taking the place of Huygens' surface sources or
volume polarization sources in integra equations.

In the present paper, an attempt is made to extend this static theory to low-
frequency problems involving a dielectric sphere. It is seen that, for a current
dipole outside the sphere, an image current source can be found in the form of
a line current and a bifilar line current. It is a.ssumed that such a theory can
be utilized for time-harmonic problems where the basic static approximation is
not good enough, i.e., when the radius of the sphere cannot be cousidered to be
very small in terms of the wavelength. Further extension to spheres with lossy
dielectric and/or magnetic permeability seems well within reach with the method
given in this paper.

2. THEORY

We consider the electromagnetic problem of an infinitesimal time-harmonic cur-
rent dipole outside a dielectric sphere centered at the origin, Fig. 1. The radius
of the sphere is a and its permittivity eoe,, and the permittivity of the space
outside the sphere is assu. ed to be e. without loss of generality. The perme-
ability both inside and outside the sphere is assumed to be pto. For simplicity,
the sphere material is a-oined to be di.sperionless. The current dipole lies at the
point r' with Ir'! > a and it is represented by the current function

J(r) = ulL&(r - r'), (1)

where the unit vector u gives the direction of the dipole and IL its moment.
Another way to describe the dipole is in terms of the dipole moment vector p,

J(r) = Jwp6(r - r'), (2)

whose relation to the current function is p = u.IL/jw.

The electric charge at the ends of the dipole is represented by the charge density
function

V .J(r) IL
e(r) = = .---VS(r-r) = -p-Vb(rr') (3)

At some stage we define the dipole to be on the cartesian coordinate z axds to be
able to compare with previous results. The objective is to find the image source
which replaces the dielectric sphere in giving the reflected field in low-frequency
approximation.
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Figure 1. Geometry of the problem. The dielectric sphere of radius a
and permittivity e = ereo is smLll in terms of the free-space
wavelength. The current dipole is outside the sphere at the

point denoted by the vector r'.

2.1 Stevenson Analysis

Let us apply the Stevenson method [12] and expand all quantities in Taylor
series of w. Assuming e independent of frequency, from the Maxwell equations

V x E = -jW oH, (4)

V X H =jweE 4J, (5)

V. D =V. (,!E) Lo, (6)

V.B = oV.H= 0, (7)

we can see that the equations are satisfied if E, D, and e are assumed to be
even, and H, B, and J odd, functions of the frequency w. We define the order

of different terms by the power of w or, what is equivalent, of ko = w V'u'7 , and
denote the order by the corresponding subindex. Let us assume that the current
is of first order, I = Jj1, i.e., a linear function of w. From (3) we see that the

charge must then be of zeroth order, 9 = O.
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2•98 -,indel et a].

Thus, in the static limit w - 0, the charges are frozen and the current is zero.
The resulting electrostatic equations are

V X Eo , (8)

V- (eZo) =,oo (9)

plus regularity conditions at infinity. The problem of the sphere was solved in
terms of electrostatic images in [4].

The first correction for the electrostatic fie)- arises from the nst-order magnetic
field H 1 , whose sources are the fst-order c-arrent J 1 and the zeroth-order electric
field satisfying

V x Hi =jWEo + .•1 , (10)

V.HI =0. (n)

The next set of equations reads

Vx•= - jwp•oHl, (12)
V. (6E2 ) =0, (13)

and so on. The problem considered here is to extend the zeroth-order electrostatic
image theory for the first-order magnetic field by finding the first-order image
currents.

2.2 Zeioth-Order Problem

The zeroth-order electric field can be written in terms of a scalar potential:

E0 = -VqO, (14)

which satisfies the Poisson equation (9)

V. (v!eV ) = -a0 (25)

This equation can also be written as

v20o -O + V PO6)

where PO denotes the secondary source, the polarization moment density of the
dielectric sphere:

P - r, I- 1 ^ (17)

In (16), the primary and secondary sources can be defined to give rise to the

incident and scattered potentials, Oo 04• + 0', in the region outside the
sphere, satisfying

_ _.. .... .. I
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0 cat(18)
v2 o = .P..'_.o (19)eo

It was seen in [4] that the latter source can be replaced by a simpler image
source yiO whose.expression depends on the original source, The corresponding
potential satisfies

v2 - _ so, (20)

The image source is chosen so that the difference O(r) - a(r) vanishes outside
the sphere, i.e., -V. PO - QiO is a non-radiating source.

2.3 First-Order Problem

Because of (11), the first-order magnetic field can be derived from a vector
potential A1 :

V= x Al, (21)

whose equation c4a be written from (10) as

V x (V x Al) = -V 2 A1 + V(V-AI) = poJI +jwpoP 0 - V~iwpoeoqO). (22)

We are free to choose one scalar condition fow Al. For the Lorenz condition

V . Al = -jw•'.oo 0 0 (23)

(22) is simplified. Splitting the vector potential into incident aLd reflected parts
Al = A"' + A' we can write

V2 A" c = - (24)

V2 A' = - jpoPO. (25)

Thus, the first-order reflected magnetic field is due to the equivalent volume cur-
rent jwPO within the sphere, and it is known if the zeroth-order problem has been
solved. However, we wish to simplify the volume source by replacing it through a
simpler image source Jil.

o. -LF AGE EXPRESSIONS

To find the image sources giO and Jil, we write the low-frequency approximatiou
of a known expression for the exact reflected electric field due to the dipole source
J(r) = jwpo6(r - r') and try to identify its sources.
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3.1 Green Dyadic

The .xatt ex=pressic.n for the reflec.ted electric field can be found, e.g., from the
raonognmph by Jones f13], and it can be written with some cjhae in notaton as

k02

rhc exact reflection G.een dyadic i3

UT(r, rl) ~ (U +r I~)~~ +vý+ [ rr , I~?)

+ 1.(r- x V)(' x V')V•'(r, r'), (27)

where r is the field point znd r", the Wource point.
The jotential function Vr for T = e iad r =- ca = be expressed s series

iavol-ting spherical Hanktl fi-ctions and Legenire polynomialst. Ow-.&eNquttcy
approximation up to 4he first order in k0 ca= be written, when k>r and v'rekor
are =na"d, iu a simpl- form obtainable from the exact expresions given by Jones
[13]. After some algebra,

r' = I 1 K- P, (cosy), (28)
4-- nkva (Tr+1)n + I rr'/

vith

r.r'

Note t•h.t tLhe angle 7 dIoes not ,Ip.'end on t,-e distances r amcd r'. Thus, we can
'xte

(rr 1/e') = 0rr P, (cus-) (30)

U,2 Zm'.;h-Order Ima$t

Assuming jt = I ior thf- dielectriL sPhere, we have V. C and '4he. 2.eroth-
order piohbln comes froo'. the b,,a,.: •erm td itU. solution should coincide with
t!Lat derived earlier in [4]. i'oin (27) aad (28) we =a approodmate the GCe,-.n
dyadic by iti lovest-ordec term, which turns out to, have the o'der -2:

(r,r')-..(r,r') - VV'- 1)+- (r

4.k0 4 ri'a

k2V Z 1 n~e-1) (a
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At this point, assuming r/ > a, we write in analogy to [4]

(er - 1) /2 n+1 a

n ~ (a + )+ -) = aJff (r', r")(r")ndr", (32)

where the image function f(r', r") is defined as

. d r 1a - rI r

and U(x) denotes the Heaviside unit step function. Equation (32) can be eaUly
verified by direct substitution of (33).

Inserting (32) in (31) gives us the representation

, r-.---. I f(r', ,.') " n, P,(co. -)dr". (34)2-r r "')J-- r"'+1
o0 f (r

Defining the vector r" to be in the same direction as

SII~, r' ,,r 1I

r =I -r = r, (35)

and the distance function D as

D(r - r") = V(r- r'). - 2 '- (r") 2 - 2rr" cosy (36)

wv ;an write from the definition of the Legendre polynomial for r > r",

1 00 (r")n'7)r -(r37,) n= -

which inserted in the Green dyadic expression (34) gives us

- r ') "- vv, 1 f(r',) dr (Ur-2(, r ko V I 47rD(r - r") d~.(8

Note that it is not only f(r', r") which depends on r/, but also the distance
function D(r - r"), because r' = i4r", where u4 = r'/r' is the unit vector of
both r' and r"'. In fact, we cain write

V,+ .. - •••. "s ='rr (39)

D(r - u4r") D3  
- ('

which is a vector orthogonal to r? and rT'. Note that the order of differentiation
and integration can be interchanged because the field is always computed outside

jl 4~~ * ~ - ---------.- -I
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the image source, i.e., outside the sphere, whence the Green function always
remains finite.

The z.roth-order reflected electric field can be written in the forn

k2-
(r) - 2 = -V(P), (40)

J o. V-f(, ). dr,, [ oP0 (-j 4 ). r'f(', 7") dr" (41)
42r£ = D(r - r--) 4,er•D'(r - r")

0 0

These expressaion car, be compared with those of the scalar potential due to a
line charge pio(r") extending from the center to the surface of the sphere,

) /- eio(r") dr" (42)
47rtoD(r - r")

0

and dua to a dipole line charge of moment density piO(v"),

p•0(r").(r - r= )
_ drr~' (43)•p(• = -J • m•,-e- '" d4s) -

0

Comparing (41), (42), and (43), it is seen that the first integral of (41) curre-
sponds to a line c•arge image whereas the second integral is of the form of a line
dipole image whose distributed dipole moment vector is perpendicular to the line.
Obviously, the former is generated by the radial component of the original dipole,
whereas the lafter is due to the transverse component of p0. Let us consider the
two cases, p0 parallel and perpendicular to V , i.e., radial and transverse dipoles.

Radial dipole

When Pa is parallel to ?, the second integral of (41) vanishes and the fist
integral can be identified with (42) with the image line charge defined as

;o0(r) =PO V'J(r', r) = -- f(r', r)

02 C' - (. rjrT--yU(a' - )] (44)

By changing the spherical coordinate r, r/ to cartesian coordinate z, z' this
result can be compared with Eq. (23) of [4], obtalued through another method.
After making the two differentiations, the expressions can be seen to coincide, ifthe different definition of the dipole moment is taken into account.

F- •-- .• • • . a . . . .- -- - • • . . .. . . . • -
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Transverse dipore

For the transverse dipole satisfyiDg PO " r' = 0, we have po V'f(r', r") = 0,
wnence only the second integral of (41) su.-vives and, identifying it with (43), the
dipole line image function can be written as

pio(r.) po-f(r, % a djr.-i (.r.II '.-•i (a 2  r
r dr)2 I + + ' U -.

a2 1 S a rfrd 4r U /a2 N

dr +1 r r' .+ 1(7 r ')xa '1

(45)
Again, after a change of ratda and cartesian coordinates, the result can be seen
to coincide with Eq. (22) of [4).

3.3 First-Order image

The reflected magnetic fie.l.d Hr can be written in terms of the curl of the
electric field as

Hr V x (4• -- -•.(4•)

The fir5t-order magnetic field is written in terms of the second-order electric field:

V x E
r = (47)

Actually, knowledge of E' is not needed, because V x E' can be exrpressed in
terms of the curl of the zuroth-order Green dyadic as

Hr=-- 2 -[ V'] x0 Uxr].pOM. (48)

The zeroth-order term of the curl of the reflection Green dyadic for a uonimag-
netic sphere with /r = I can be written from (27), after some steps, as

0 47r iOri

(r/ V,) = - n+ 1(*1'a F n(cos-y). (50)
E an(4Cr + 1) ;-1 r'n=1

Proceeding as in the previous section, we can write

Cr -1 I L\r [a g ",r)(r")jI dr",

0(+))

I 0
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by deflfinig

erU(E- r).(52)
er +1 / =a r/

The g(r', r") function has a simple relation to the f(r', r") function defined in
(33):

rf(', r") d, -A..[r g(r', r")]. 53)

The curl term has now the form

_.(r rl CI O I Ix n¢ J~l

S(r g V)V'J(r'r") ir"

0 n0O

=V x rV' 4 D(r-r r") (54)

Here, the sum in (50) has been extended from n I to n =0 because r x
VPO(cos-f) = 0.

Writin8 the &fst-order magnetic field as

Hl = jw[V x Ur]o PO IV x Al, (55)

the vector potential can be defined as

a

Al(r) = jw.oPO ' V, - rg(r',r") dr"' (56)J 47rD(r -r")
0

Because

r =VD(r -r/I) + r (7
D(r - r") - + D(r - rf)1 (57)

and since the gradient term vanishs in the curl expression of the natgnetic field,
it can be omitted and we can further write

A(r) wopo 'g(r',r) dr
f 4rD(r -e)
0

aaX"(PO'-V'g) (po .r dr"

=wo 4o r wj, 4.r
0a

+iWI jw P0 !L p dr". (58)4r 0!
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This expremsio can be compared with that for the vector potential due to a line
current along the z axis, I(z"):

a

A(r) = Po 4dDr--u~z") ax", (59)

0

and due to a bifilar line current defined by the current density function

J(r") = I(-")LT- V"6(p). (60)

p is the transverse (xy plane) position vector, L the infinitesimal distance vector
between two kifte currents, +1 flowing along the z axis and -I parallel to it
through the point p" = L. IL is the finite moment dyadic of the bifilr current.
The corresponding vector potential can be written as

a aA(,) =jo/ -(•) . -P,, i , V x.4f D(r - u•") - 47r DA~) ~s ~D( 4 )d"= -P, v" 1 d . (61)

0 0

To find the image currents, let us again separate the two cases:

Radial dipole

In this case, the operator p0. 7' only operates on the function g(r', r") , whence
the last two integrals in (58) vanish. Comparing with (59), the vector potential
can be expressed in tenns of an image line current flowing along the r' direction:

1,1(r") ,jwpo -V"(r',,r")ur" = jwpo d r

= do• er+ 1 a a-•- 2 -t "

JWPO [ e, 1 1

Er(ErlI a 'r A T2 \

(+ )2(er a rfT)(.t*7 U ( _-r )J (62)

It is Seen that the image consists of a line current between the origin and Kelvin
point r = a2/r' and a dipole at the Kelvin point. Figure 2 depicts the continuous
part of the normalized image current function for different distances of the dipole
and ver = 5.

The divergence of the image current

_~~ 
r".- -Wf 

n(n ...
2.
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when compared with (44), shows that the. condition of continuity

V, It  -7WeiO (64)

is satisfiedl. This can be pictured so that the char-ges of the static image make
up the current of the first-order image through sinusoidal motion along the image
line.

InuP current of radial dipole

jd/a=2

............ . . . . . .- . ... . .. ........ ... t .

-0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zia

Figure 2. Normalized functions characterizing the image current line cor-
responding to a radial dipole at different distances d for Cr = 5.I.: The delta function at the Kelvin point is not shown.
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Transverse dipole

In the case of o peiPendicular to r' we have po" V'g(r', r") = 0, and the
last two integrals in (58) form the expression for the vector potential:

(rpo -1 dr"r

AI(r) =jw0/ p dr" + jWP4 P D
IJ 4irD 47c

0 0

For the last step we have invoked the property

PO -V, p 1 V"

p (r 1 4 r") 1 - '(66)

Comparing (65) with (59) and (61) shows us that the image can be written as a

combination of a transverse current strip plus a longitudinal bifilar line current.
The fire integral of (65) corresponds to a transverse current which has the form

wpg(,.") = .g(r , rU). (67)

The second term corresponds to a bifilar current along the direction ri with the
moment dyadic

•]•= j• ' ", poy(r' rl) (68)

Thus, a transverse current element corresponds to an image which has both axial
and transverse components. Combining these leads finally to the image current
density

Jil(r") =jwpo f (r', r")61,") -jwu_-_2(,I, r")po. -V"(p")I

= j w f' 9( r'' rl" )v " x [p o x , u- r' 16 p" )] •( 6 9)
r/

Let us again check the continuity condition. The divergence of the image.
current density (69) can be written as

V"Jil = jw" f(r', r") V". po6( p")] = jW "V. IPi =" -jw•oi. (70)

The last term refers to the image charge density corresponding tothe inage dipole
density given in the static case (45). It is seen that also in the transverse dipole
case the first-order image current and the zeroth-order charge sati4T the continu-
ity condition, which means that the first-order image current caa be pictured as

being the zeroth-order image charge in perioclic motion. Since the current cannot

tM
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be determined from the charge, because it is not uniquely determined from its
divergence, the present analysis was needed to find the result.

The image expression for the transverse dipole (69) cam also be written in the
form

J -(r") = V I x w (r'r")po x 46(p")] +jwf f(r',,")pg6(p"), (71)

of which the first term can be expressed in terms of an equivalent magnetic current[11]:

V X J " " (7 2 )

Thus, as an alternative to the expression (69), the transverse dipole po can be
seen to give rise to transverse electric and magnetic image strip currents of the
form

In ko (r) r, ) , (73)

'mi2 = -g' r")p0 x u!,. (74)

These two strip currents are seen to be at right angles to one another. Their
normalized functional dependence is depicted in Fig. 3 for certain relative permit-
tivities of the sphere.

4. SUMMARY OF RESULTS

Let us summarize the fist-order low-frequency image results in cartesian coordi-
nate form which is more easily applicable in further analysis. The indices showing
the order of the image are omitted in the sequel.

For a slowly oscillating current dipole on z axis, defined by

J(r) = u1,LS(2 - d)b(p), (75)

the image corresponding to the axial dipole, with u = u,, is

Jt(r) =e-rz-IL [C• - I (ab•'--"-e'. +1 kI \) d}

+de 1)~ (a - 2 o)(G

while thc trasver.-e6p,,.e, wj,- u. ua = 0, corresponds to the image current
density

$Cr re7 1• •'-l1+z,9 F 02 u() uu
Jj(r)=IL '0 (d U , )- [ub(p)-zu~u- VS(p)], (77)er +121 aT)
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or to the combination of electric 9.nd magnetic image current densities

r,-,,o,,.,r~n
Ji(r) =ur L •- ° - E ( L -a 1)

J~jrJ ~u zrj 1. d1 +1'd) y-Ter U(-2 - (a d)5(p). 79(78)
2

. . e,-1 (d f z /rý,, .aJ ,. ,(r) = (U x 'U, j w A o,r -• -d') 2, }• - • • ) (79 )

0.

-0 . 2 - ............

C I I I
"0 0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.8 0.9 1

z/a(b 06 .. . . ..... ... ........-.

SFiguire 3 Norm~aliLd lez,'c (a) and mag~netic (b) conaponents of the im-
age current ccrresponding to a transverse dipole at the distance
d = 1.la for d~ifereut value of the relative pennittivity of the[ ~sphere, E,.. The currents flow transverse to the z axis and each
other. The delta function at the Kelvin point is not shown.

_I
_.4

ll= -- ]-- •1... .. ... T.i=i •, • -il 11,-nT•, - -- -•i - .rrif r" -l- i.. .. Nrl['," -0 1I~~~~~~~~~L I
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5. SPECIAL CASES

Let us fina3ly study some limit cases to check the image current expressions (76)-
(79) for the dielectric sphere.

1. For er -* 1 the sphere vanishes. From (76)-(79) we see that ali image currents
vanish because of the factor e, - 1.

2. For er > 1 the dielectric sphere becomes somewhat similar to an ideally
conducting sphere for the electric field. In the present cace, for a radial dipole,
the image current (76) has the form

3 = -jcwuIrL [(1d) 6(Z __L) + aU(~~) () (80)

i.e., it is composed of a point dipole plus a constant line current. This simple
result does not seem to be known. For a transverse dipole, the image current
density (77) is

a a2

i=jwIL- aV X [U. x U'ZS (p")} U(--z) (81)

which consists of a con-stant transverse current plus a bifila axial line current,
whose amplitude is proportiozal to z. From (78), (79) we have another represen-
tation in terms of an electric and a magnetic current

Ji =jwuIL (a) IS ' _ L) 6(p0), (82)

k2 (a 2

m (u x %) Z'IL "U Z) 5 (,P). (83)

This means that the other form for the image of the transverse dipole consists of
a transverse dipole plus a transverse magnetic line current with linear amplitude
dependence. Note that application of these results requires a small enough fre-
quency because in deriving the first-order theory it was assumed that x/• kor be
small.

3. For d > a we have a dielectric sphere in homogeneous incident electric
field. Because the distance to the Kelvin point a2 /d becomes small, the image
is concentrated at the cexiter. Moments of the image give multipole terms for the
image point source.

For the radial dipole we can write from (76) for the zeroth moment of the
image curent, i.e., the moment of the image dipole at the center of the spheý.e,
the expression

Ji(r)dV -2uzIL -•-I -O • (84)I Er +±2
V

From (77) we find the image moment corresponding to the transverse dipole with
direction u:
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Ji(r)dV = uIL C- 1 " (85)

V

Because the lowest-order terms for the electric field incident from a radial and
a transverse dipole with the respective moments u-IL and uIL at the distance
d are, respect.vely,

piac = 2uzIL inc UILF - , (86)
47r7;od7' 4rtd

these inserted in the respective expressions (84) and (85) give the same dipole
moment expression

IiL = -47reoa3 v-c (87)
Cr + 2

responsible for the lowest-order scattered dipolar field. This coincides with the
well-known result obtained elsewhere through the Stevenson analysis [14].

There is a magnetic moment corresponding to the image of the transverse
dipole, which is obtained by integrating (79) over the sphere:

,Jmi(r)dV = (u x uz)jw,,oIL e, I a (88)

This is of smaller order than the electric moments because of the 1/d 4 dependence
on the distance. Simple expressions for higher order multipole moments can also
be readily obtained from the image cusTent expressions (76) and (77).
4. For a -4 oo the spherical interface becomes planar and we can compare the

result with that given by the Exact Image Theory [15] in the low-frequency case.
Taking, for example, the transverse magnetic (TM) image current due to a

vertical electric dipole above a dielectric half space from [16], we can write for the
exact image current

rTM(C) = -uzrLf7M(() (89)

with

fTM(o) =-IL T n \er + 1 C + 1 "41- (9•)

B = koV ko = wy"T-i. (91)
The variable me-sures distance from the mrror image point r = -u h dowan-

wards. Because f2'M(C) is an even function of B and, hence, of w, the low-
frequency approximation 8i -- 0 starts with

fTM(c) .. IL • - 6(C) + IL r(r k(U(,) + ... (92)

I I I I Ir +I (Er + i )2
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Thus, in the frst order approximation, only the delta term remains and the image
current is

In the present sphere problem, taking the limit a --t o and denoting d = h~a,
(= ao-(z+h), where h is the height of the dipole from the interface, substituting
z = a - (h + (), and a 2/d - a- h in (76), (77) leaves us with the asymptotic
image expression

f, + I (Cr +1)1

of which the second terms vanishes and the first one coincides with the exact
"image r,-sWt above.
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